Contents

1 Introduction ... 11
 Document Conventions .. 11
 Introduction to Wireless Networking 11
 Guidelines for Roaming .. 12
 IEEE 802.11 Specifications ... 13
 Management and Monitoring Capabilities 13
 HTTP/HTTPS Interface .. 13
 Command Line Interface .. 13
 SNMP Management .. 14
 SNMPv3 Secure Management 14
 SSH (Secure Shell) Management 14

2 Getting Started ... 15
 SYSTIMAX AirSPEED AP541 Hardware Description 15
 Dual Band Signal Enhancing Antenna Description 16
 Antenna Diversity Options 16
 Power over Ethernet (PoE) 16
 LED Indicators .. 16
 Installation in the Plenum (North America Only) 17
 Prerequisites (for AP Configuration Only) 17
 Product Package ... 19
 System Requirements .. 19
 Regulatory Compliance and Safety Instructions 19
 Initialization .. 20
 ScanTool ... 20
 ScanTool Instructions ... 20
 Setup Wizard ... 22
 Setup Wizard Instructions 22
 Latest Software Availability ... 25
 Setup your TFTP Server .. 25
 Download Updates from your TFTP Server using the Web Interface 25
 Download Updates from your TFTP Server using the CLI Interface 25
 Logging into the HTTP Interface 26

3 Viewing Status Information .. 28

4 Performing Advanced Configuration 29
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>31</td>
</tr>
<tr>
<td>Dynamic DNS Support</td>
<td>31</td>
</tr>
<tr>
<td>Access Point System Naming Convention</td>
<td>31</td>
</tr>
<tr>
<td>Network</td>
<td>33</td>
</tr>
<tr>
<td>IP Configuration</td>
<td>33</td>
</tr>
<tr>
<td>DHCP Server</td>
<td>35</td>
</tr>
<tr>
<td>DHCP Relay Agent</td>
<td>36</td>
</tr>
<tr>
<td>DHCP Server IP Address Table</td>
<td>36</td>
</tr>
<tr>
<td>Link Integrity</td>
<td>37</td>
</tr>
<tr>
<td>Interfaces</td>
<td>39</td>
</tr>
<tr>
<td>Operational Mode</td>
<td>40</td>
</tr>
<tr>
<td>Super Mode and Turbo Mode</td>
<td>40</td>
</tr>
<tr>
<td>IEEE 802.11d Support for Additional Regulatory Domains</td>
<td>40</td>
</tr>
<tr>
<td>TX Power Control</td>
<td>41</td>
</tr>
<tr>
<td>Wireless (802.11a/b/g radio)</td>
<td>43</td>
</tr>
<tr>
<td>Dynamic Frequency Selection (DFS)</td>
<td>45</td>
</tr>
<tr>
<td>RTS/CTS Medium Reservation</td>
<td>45</td>
</tr>
<tr>
<td>Wireless Service Status</td>
<td>45</td>
</tr>
<tr>
<td>Multicast Rate</td>
<td>46</td>
</tr>
<tr>
<td>Wireless Distribution System (WDS)</td>
<td>48</td>
</tr>
<tr>
<td>Ethernet</td>
<td>50</td>
</tr>
<tr>
<td>Management</td>
<td>51</td>
</tr>
<tr>
<td>Passwords</td>
<td>51</td>
</tr>
<tr>
<td>IP Access Table</td>
<td>51</td>
</tr>
<tr>
<td>Services</td>
<td>52</td>
</tr>
<tr>
<td>Secure Management</td>
<td>52</td>
</tr>
<tr>
<td>SNMP Settings</td>
<td>52</td>
</tr>
<tr>
<td>HTTP Access</td>
<td>52</td>
</tr>
<tr>
<td>HTTPS Access (Secure Socket Layer)</td>
<td>52</td>
</tr>
<tr>
<td>Telnet Configuration Settings</td>
<td>54</td>
</tr>
<tr>
<td>Secure Shell (SSH) Settings</td>
<td>54</td>
</tr>
<tr>
<td>SSH Session Setup</td>
<td>54</td>
</tr>
<tr>
<td>SSH Clients</td>
<td>54</td>
</tr>
<tr>
<td>Configuring SSH</td>
<td>54</td>
</tr>
<tr>
<td>Serial Configuration Settings</td>
<td>56</td>
</tr>
<tr>
<td>RADIUS Based Management Access</td>
<td>56</td>
</tr>
<tr>
<td>Automatic Configuration (AutoConfig)</td>
<td>57</td>
</tr>
<tr>
<td>Auto Configuration and the CLI Batch File</td>
<td>57</td>
</tr>
<tr>
<td>Hardware Configuration Reset (CHRD)</td>
<td>60</td>
</tr>
<tr>
<td>Configuration Reset via Serial Port During Bootup</td>
<td>60</td>
</tr>
<tr>
<td>Configuring Hardware Configuration Reset</td>
<td>61</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Procedure to Reset Configuration via the Serial Interface</td>
<td>61</td>
</tr>
<tr>
<td>Filtering</td>
<td>62</td>
</tr>
<tr>
<td>Ethernet Protocol</td>
<td>62</td>
</tr>
<tr>
<td>Static MAC</td>
<td>63</td>
</tr>
<tr>
<td>Static MAC Filter Examples</td>
<td>64</td>
</tr>
<tr>
<td>Advanced</td>
<td>66</td>
</tr>
<tr>
<td>TCP/UDP Port</td>
<td>67</td>
</tr>
<tr>
<td>Adding TCP/UDP Port Filters</td>
<td>67</td>
</tr>
<tr>
<td>Editing TCP/UDP Port Filters</td>
<td>67</td>
</tr>
<tr>
<td>Alarms</td>
<td>68</td>
</tr>
<tr>
<td>Groups</td>
<td>68</td>
</tr>
<tr>
<td>Severity Levels</td>
<td>68</td>
</tr>
<tr>
<td>Alarm Host Table</td>
<td>70</td>
</tr>
<tr>
<td>Syslog</td>
<td>71</td>
</tr>
<tr>
<td>Setting Syslog Event Notifications</td>
<td>71</td>
</tr>
<tr>
<td>Configuring Syslog Event Notifications</td>
<td>71</td>
</tr>
<tr>
<td>Syslog Messages</td>
<td>72</td>
</tr>
<tr>
<td>Rogue Scan</td>
<td>73</td>
</tr>
<tr>
<td>Multi-Band Scanning</td>
<td>73</td>
</tr>
<tr>
<td>Continuous Scanning Mode</td>
<td>73</td>
</tr>
<tr>
<td>Background Scanning Mode</td>
<td>74</td>
</tr>
<tr>
<td>Rogue Scan Data Collection</td>
<td>74</td>
</tr>
<tr>
<td>Rogue Scan</td>
<td>75</td>
</tr>
<tr>
<td>Bridge</td>
<td>77</td>
</tr>
<tr>
<td>Spanning Tree</td>
<td>77</td>
</tr>
<tr>
<td>Storm Threshold</td>
<td>77</td>
</tr>
<tr>
<td>Intra BSS</td>
<td>77</td>
</tr>
<tr>
<td>Packet Forwarding</td>
<td>78</td>
</tr>
<tr>
<td>Configuring Interfaces for Packet Forwarding</td>
<td>78</td>
</tr>
<tr>
<td>QoS</td>
<td>79</td>
</tr>
<tr>
<td>Wireless Multimedia Extensions (WMM)/Quality of Service (QoS)</td>
<td>79</td>
</tr>
<tr>
<td>QoS Policies</td>
<td>79</td>
</tr>
<tr>
<td>Priority Mapping</td>
<td>81</td>
</tr>
<tr>
<td>Enhanced Distributed Channel Access (EDCA)</td>
<td>83</td>
</tr>
<tr>
<td>STA EDCA Table and AP EDCA Table</td>
<td>83</td>
</tr>
<tr>
<td>RADIUS Profiles</td>
<td>85</td>
</tr>
<tr>
<td>RADIUS Servers per Authentication Mode and per VLAN</td>
<td>85</td>
</tr>
<tr>
<td>RADIUS Servers Enforcing VLAN Access Control</td>
<td>86</td>
</tr>
<tr>
<td>Configuring RADIUS Profiles</td>
<td>86</td>
</tr>
<tr>
<td>Adding or Modifying a RADIUS Server Profile</td>
<td>86</td>
</tr>
<tr>
<td>MAC Access Control Via RADIUS Authentication</td>
<td>88</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>802.1x Authentication using RADIUS</td>
<td>88</td>
</tr>
<tr>
<td>RADIUS Accounting</td>
<td>88</td>
</tr>
<tr>
<td>Session Length</td>
<td>88</td>
</tr>
<tr>
<td>Authentication and Accounting Attributes</td>
<td>88</td>
</tr>
<tr>
<td>SSID/VLAN/Security</td>
<td>90</td>
</tr>
<tr>
<td>Management VLAN</td>
<td>90</td>
</tr>
<tr>
<td>VLAN Overview</td>
<td>90</td>
</tr>
<tr>
<td>VLAN Workgroups and Traffic Management</td>
<td>91</td>
</tr>
<tr>
<td>Enabling or Disabling VLAN Protocol</td>
<td>92</td>
</tr>
<tr>
<td>Security Profile</td>
<td>93</td>
</tr>
<tr>
<td>WEP Encryption</td>
<td>93</td>
</tr>
<tr>
<td>802.1x Authentication</td>
<td>93</td>
</tr>
<tr>
<td>Wi-Fi Protected Access (WPA/WPA2)</td>
<td>94</td>
</tr>
<tr>
<td>Authentication Protocol Hierarchy</td>
<td>95</td>
</tr>
<tr>
<td>VLANs and Security Profiles</td>
<td>95</td>
</tr>
<tr>
<td>Configuring Security Profiles</td>
<td>96</td>
</tr>
<tr>
<td>MAC Access</td>
<td>99</td>
</tr>
<tr>
<td>Wireless</td>
<td>100</td>
</tr>
<tr>
<td>Adding or Modifying an SSID/VLAN with VLAN Protocol Disabled</td>
<td>100</td>
</tr>
<tr>
<td>Adding or Modifying an SSID/VLAN with VLAN Protocol Enabled</td>
<td>103</td>
</tr>
<tr>
<td>Broadcast SSID and Closed System</td>
<td>106</td>
</tr>
<tr>
<td>5 Monitoring the AirSPEED AP541</td>
<td>107</td>
</tr>
<tr>
<td>Version</td>
<td>108</td>
</tr>
<tr>
<td>ICMP</td>
<td>109</td>
</tr>
<tr>
<td>IP ARP Table</td>
<td>109</td>
</tr>
<tr>
<td>Learn Table</td>
<td>110</td>
</tr>
<tr>
<td>IAPP</td>
<td>110</td>
</tr>
<tr>
<td>RADIUS</td>
<td>111</td>
</tr>
<tr>
<td>Interfaces</td>
<td>112</td>
</tr>
<tr>
<td>Station Statistics</td>
<td>113</td>
</tr>
<tr>
<td>Enabling and Viewing Station Statistics</td>
<td>113</td>
</tr>
<tr>
<td>Refreshing Station Statistics</td>
<td>113</td>
</tr>
<tr>
<td>Description of Station Statistics</td>
<td>113</td>
</tr>
<tr>
<td>6 Performing Commands</td>
<td>115</td>
</tr>
<tr>
<td>Introduction to File Transfer via TFTP or HTTP</td>
<td>116</td>
</tr>
<tr>
<td>TFTP File Transfer Guidelines</td>
<td>116</td>
</tr>
<tr>
<td>HTTP File Transfer Guidelines</td>
<td>116</td>
</tr>
<tr>
<td>Image Error Checking during File Transfer</td>
<td>116</td>
</tr>
</tbody>
</table>
7 Troubleshooting the AirSPEED AP541 125

Troubleshooting Concepts ... 125

Symptoms and Solutions .. 126

Connectivity Issues .. 126

AP Unit Will Not Boot - No LED Activity 126
Serial Link Does Not Work .. 126
Ethernet Link Does Not Work ... 126

Basic Software Setup and Configuration Problems 126

Lost AP, Telnet, or SNMP Password 126
Client Computer Cannot Connect ... 126
AP Has Incorrect IP Address ... 126
HTTP (browser) or Telnet Interface Does Not Work 127
HTML Help Files Do Not Appear .. 127
Telnet CLI Does Not Work .. 127
TFTP Server Does Not Work ... 127

Client Connection Problems .. 128

Client Software Finds No Connection 128
Client PC Card Does Not Work .. 128
Intermittent Loss of Connection .. 128
Client Does Not Receive an IP Address - Cannot Connect to Internet .. 128

VLAN Operation Issues ... 128

Verifying Proper Operation of the VLAN Feature 128
VLAN Workgroups ... 128

Power over Ethernet (PoE) ... 129
The AP Does Not Work ... 129
There Is No Data Link .. 129
“Overload” Indications ... 129

Recovery Procedures .. 129

Reset to Factory Default Procedure 130
Forced Reload Procedure ... 130
Download a New Image Using ScanTool 131
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download a New Image Using the Bootloader CLI</td>
<td>132</td>
</tr>
<tr>
<td>Setting IP Address using Serial Port</td>
<td>133</td>
</tr>
<tr>
<td>Hardware and Software Requirements</td>
<td>133</td>
</tr>
<tr>
<td>Attaching the Serial Port Cable</td>
<td>133</td>
</tr>
<tr>
<td>Initializing the IP Address using CLI</td>
<td>133</td>
</tr>
<tr>
<td>Related Applications</td>
<td>135</td>
</tr>
<tr>
<td>RADIUS Authentication Server</td>
<td>135</td>
</tr>
<tr>
<td>TFTP Server</td>
<td>135</td>
</tr>
<tr>
<td>A Using the Command Line Interface (CLI).</td>
<td>136</td>
</tr>
<tr>
<td>General Notes</td>
<td>136</td>
</tr>
<tr>
<td>Prerequisite Skills and Knowledge</td>
<td>136</td>
</tr>
<tr>
<td>Notation Conventions</td>
<td>136</td>
</tr>
<tr>
<td>Important Terminology</td>
<td>136</td>
</tr>
<tr>
<td>Navigation and Special Keys</td>
<td>137</td>
</tr>
<tr>
<td>CLI Error Messages</td>
<td>137</td>
</tr>
<tr>
<td>Command Line Interface (CLI) Variations</td>
<td>137</td>
</tr>
<tr>
<td>Bootloader CLI</td>
<td>138</td>
</tr>
<tr>
<td>CLI Command Types</td>
<td>139</td>
</tr>
<tr>
<td>Operational CLI Commands</td>
<td>139</td>
</tr>
<tr>
<td>? (List Commands)</td>
<td>139</td>
</tr>
<tr>
<td>done, exit, quit</td>
<td>141</td>
</tr>
<tr>
<td>download</td>
<td>141</td>
</tr>
<tr>
<td>help</td>
<td>141</td>
</tr>
<tr>
<td>history</td>
<td>142</td>
</tr>
<tr>
<td>passwd</td>
<td>142</td>
</tr>
<tr>
<td>reboot</td>
<td>142</td>
</tr>
<tr>
<td>search</td>
<td>142</td>
</tr>
<tr>
<td>upload</td>
<td>143</td>
</tr>
<tr>
<td>Parameter Control Commands</td>
<td>143</td>
</tr>
<tr>
<td>“show” CLI Command</td>
<td>143</td>
</tr>
<tr>
<td>“set” CLI Command</td>
<td>144</td>
</tr>
<tr>
<td>Configuring Objects that Require Reboot</td>
<td>144</td>
</tr>
<tr>
<td>“set” and “show” Command Examples</td>
<td>144</td>
</tr>
<tr>
<td>Using Tables & User Strings</td>
<td>146</td>
</tr>
<tr>
<td>Working with Tables</td>
<td>146</td>
</tr>
<tr>
<td>Using Strings</td>
<td>147</td>
</tr>
<tr>
<td>Configuring the AP using CLI commands</td>
<td>147</td>
</tr>
<tr>
<td>Log into the AP using HyperTerminal</td>
<td>147</td>
</tr>
<tr>
<td>Log into the AP using Telnet</td>
<td>148</td>
</tr>
<tr>
<td>Set Basic Configuration Parameters using CLI Commands</td>
<td>148</td>
</tr>
</tbody>
</table>
Set System Name, Location and Contact Information ... 148
Set Static IP Address for the AP ... 149
Change Passwords .. 149
Set Network Names for the Wireless Interface .. 149
Enable 802.11d Support and Set the Country Code ... 151
Enable and Configure TX Power Control for the Wireless Interface(s) 152
Configure SSID (Network Name) and VLAN Pairs, and Profiles 152
Download an AP Configuration File from your TFTP Server 152
Backup your AP Configuration File .. 152
Set up Auto Configuration .. 153
Other Network Settings ... 153
Configure the AP as a DHCP Server ... 153
Configure the DNS Client ... 154
Configure DHCP Relay .. 154
Configure DHCP Relay Servers .. 154
Maintain Client Connections using Link Integrity ... 154
Change your Wireless Interface Settings .. 154
Set Ethernet Speed and Transmission Mode .. 156
Set Interface Management Services .. 156
Configure Syslog ... 157
Configure Intra BSS ... 157
Configure MAC Access Control ... 158
Set RADIUS Parameters ... 158
Set Rogue Scan Parameters .. 159
Set Hardware Configuration Reset Parameters .. 159
Set VLAN/SSID Parameters .. 160
CLI Monitoring Parameters .. 161
Parameter Tables ... 161
System Parameters ... 163
Inventory Management Information .. 163
Network Parameters ... 164
IP Configuration Parameters .. 164
DHCP Server Parameters ... 165
DHCP Relay Group ... 165
DHCP Relay Server Table .. 166
Link Integrity Parameters .. 166
Link Integrity IP Target Table .. 166
Interface Parameters ... 167
Wireless Interface Parameters .. 167
Wireless Interface SSID/VLAN/Profile Parameters 171
Wireless Distribution System (WDS) Security Table Parameters 171
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet Interface Parameters</td>
<td>172</td>
</tr>
<tr>
<td>Management Parameters</td>
<td>172</td>
</tr>
<tr>
<td>Secure Management Parameters</td>
<td>172</td>
</tr>
<tr>
<td>SNMP Parameters</td>
<td>172</td>
</tr>
<tr>
<td>HTTP (web browser) Parameters</td>
<td>173</td>
</tr>
<tr>
<td>Telnet Parameters</td>
<td>173</td>
</tr>
<tr>
<td>Serial Port Parameters</td>
<td>173</td>
</tr>
<tr>
<td>RADIUS Based Management Access Parameters</td>
<td>174</td>
</tr>
<tr>
<td>SSH Parameters</td>
<td>174</td>
</tr>
<tr>
<td>Auto Configuration Parameters</td>
<td>174</td>
</tr>
<tr>
<td>TFTP Server Parameters</td>
<td>175</td>
</tr>
<tr>
<td>IP Access Table Parameters</td>
<td>175</td>
</tr>
<tr>
<td>Filter Parameters</td>
<td>175</td>
</tr>
<tr>
<td>Ethernet Protocol Filtering</td>
<td>175</td>
</tr>
<tr>
<td>Static MAC Address Filter Table</td>
<td>176</td>
</tr>
<tr>
<td>Proxy ARP Parameters</td>
<td>176</td>
</tr>
<tr>
<td>IP ARP Filtering Parameters</td>
<td>176</td>
</tr>
<tr>
<td>Broadcast Filtering Table</td>
<td>177</td>
</tr>
<tr>
<td>TCP/UDP Port Filtering</td>
<td>177</td>
</tr>
<tr>
<td>Alarms Parameters</td>
<td>178</td>
</tr>
<tr>
<td>SNMP Table Host Table Parameters</td>
<td>178</td>
</tr>
<tr>
<td>Syslog Parameters</td>
<td>178</td>
</tr>
<tr>
<td>Bridge Parameters</td>
<td>179</td>
</tr>
<tr>
<td>Spanning Tree Parameters</td>
<td>179</td>
</tr>
<tr>
<td>Storm Threshold Parameters</td>
<td>179</td>
</tr>
<tr>
<td>Intra BSS Subscriber Blocking</td>
<td>180</td>
</tr>
<tr>
<td>Packet Forwarding Parameters</td>
<td>180</td>
</tr>
<tr>
<td>RADIUS Parameters</td>
<td>180</td>
</tr>
<tr>
<td>Security Parameters</td>
<td>181</td>
</tr>
<tr>
<td>MAC Access Control Parameters</td>
<td>181</td>
</tr>
<tr>
<td>Rogue Scan Configuration Table</td>
<td>181</td>
</tr>
<tr>
<td>Hardware Configuration Reset</td>
<td>182</td>
</tr>
<tr>
<td>VLAN/SSID Parameters</td>
<td>182</td>
</tr>
<tr>
<td>Security Profile Table</td>
<td>182</td>
</tr>
<tr>
<td>Command Syntax and Examples of Configuring Security Profiles:</td>
<td>183</td>
</tr>
<tr>
<td>Other Parameters</td>
<td>184</td>
</tr>
<tr>
<td>IAPP Parameters</td>
<td>184</td>
</tr>
<tr>
<td>Wi-Fi Multimedia (WMM)/Quality of Service (QoS) parameters</td>
<td>184</td>
</tr>
<tr>
<td>Enabling QoS</td>
<td>184</td>
</tr>
<tr>
<td>Configuring QoS Policies</td>
<td>185</td>
</tr>
<tr>
<td>Specifying the Mapping between 802.1p and 802.1D Priorities</td>
<td>185</td>
</tr>
<tr>
<td>Specifying the Mapping between IP Precedence/DSCP Ranges and 802.1D Priorities</td>
<td>185</td>
</tr>
</tbody>
</table>
Introduction

- Document Conventions
- Introduction to Wireless Networking
- IEEE 802.11 Specifications
- Management and Monitoring Capabilities

Document Conventions
- The term AP refers to an Access Point.
- The term 802.11 is used to describe features that apply to the 802.11a, 802.11b, and 802.11g wireless standards.
- Blue underlined text indicates a link to a topic or Web address. If you are viewing this documentation on your computer, click the blue text to jump to the linked item.

NOTE
A Note indicates important information that helps you make better use of your computer.

CAUTION
A Caution indicates either potential damage to hardware or loss of data and tells you how to avoid the problem.

Introduction to Wireless Networking

An Access Point (AP) is a device used to extend the existing Ethernet network (structured cabling) to mobile clients (i.e., laptops, PDAs), enabling mobility, productivity, collaboration and flexibility. Mobile clients can connect to a single Access Point, or move between multiple Access Points located within the same vicinity, maintaining network connectivity.

To determine the best location for an Access Point, SYSTIMAX recommends following the SYSTIMAX Design and Installation Guidelines. For information, contact your local reseller or visit our website at www.systimax.com.

Network initialization and configuration should be performed by the network administrator based on network requirements.

Figure 1-1 Typical Wireless Network Access Infrastructure
A wireless network provides:
- Seamless client roaming
- Easy installation and operation
- Over-the-air encryption of data
- High speed network links

Guidelines for Roaming
- An Access Point can only communicate with client devices that support its wireless standard.
- All Access Points must have the same Network Name to support client roaming.
- All workstations with an 802.11 client adapter installed must use either a Network Name of “any” or the same
 Network Name as the Access Points that they will roam between. If an AP has Closed System enabled, a client
 must have the same Network Name as the Access Point to communicate (see Interfaces for details).
- All Access Points and clients must have matching security settings to communicate.
- The Access Points’ cells should overlap to ensure that there are no gaps in coverage and to ensure that the
 roaming client will always have a connection available.
- The AP541, when set to operate in 802.11b/g mode, operates in the 2.4 GHz band and offers greater range, but
 less bandwidth (11 Mbits/s) than when set to operate in 802.11a mode. 802.11a mode operates in the 5 GHz band,
 and has a lower range but a higher bandwidth (54 Mbits/s).
- All Access Points in the same vicinity should use a unique, independent channel. By default, the AP automatically
 scans for available channels during boot-up; however, you can also set the channel manually (see Interfaces for
details).
- Access Points that use the same channel should be installed as far away from each other as possible to reduce
 potential interference.
IEEE 802.11 Specifications

In 1997, the Institute of Electrical and Electronics Engineers (IEEE) adopted the 802.11 standard for wireless devices operating in the 2.4 GHz frequency band. This standard includes provisions for three radio technologies: direct sequence spread spectrum, frequency hopping spread spectrum, and infrared. Devices that comply with the 802.11 standard operate at a data rate of either 1 or 2 Megabits per second (Mbits/s).

In 1999, the IEEE modified the 802.11 standard to support direct sequence devices that can operate at speeds of up to 11 Mbits/s. The IEEE ratified this standard as 802.11b. 802.11b devices are backwards compatible with 2.4 GHz 802.11 direct sequence devices (that operate at 1 or 2 Mbits/s). Available Frequency Channels vary by regulatory domain and/or country. See 802.11b/g Channel Frequencies for details.

Also in 1999, the IEEE modified the 802.11 standard to support devices operating in the 5 GHz frequency band. This standard is referred to as 802.11a. 802.11a devices are not compatible with 2.4 GHz 802.11 or 802.11b devices. 802.11a radios use a radio technology called Orthogonal Frequency Division Multiplexing (OFDM) to achieve data rates of up to 54 Mbits/s. Available Frequency Channels vary by regulatory domain and/or country. See 802.11a Channel Frequencies for details.

In 2003, the IEEE introduced the 802.11g standard. 802.11g devices operate in the 2.4 GHz frequency band using OFDM to achieve data rates of up to 54 Mbits/s. In addition, 802.11g devices are backwards compatible with 802.11b devices. Available Frequency Channels vary by regulatory domain and/or country. See 802.11b/g Channel Frequencies for details.

Management and Monitoring Capabilities

There are several management and monitoring interfaces available to allow the network administrator to configure and manage an AP on the network:

- HTTP/HTTPS Interface
- Command Line Interface
- SNMP Management
- SSH (Secure Shell) Management

HTTP/HTTPS Interface

The HTTP interface (Web browser interface) provides easy access to configuration settings and network statistics from any computer on the network. You can access the HTTP interface over your LAN (switch, hub, etc.), over the Internet, or with a “crossover” Ethernet cable connected directly to your computer’s Ethernet port.

HTTPS provides an HTTP connection over a Secure Socket Layer. HTTPS is one of three available secure management options on the AP; the other secure management options are SNMPv3 and SSH. Enabling HTTPS allows the user to access the AP in a secure fashion using Secure Socket Layer (SSL) over port 443. The AP supports SSLv3 with a 128-bit encryption certificate maintained by the AP for secure communications between the AP and the HTTP client. All communications are encrypted using the server and the client-side certificate.

The AP comes pre-installed with all required SSL files: default certificate, private key and SSL Certificate Passphrase installed.

Command Line Interface

The Command Line Interface (CLI) is a text-based configuration utility that supports a set of keyboard commands and parameters to configure and manage an AP.

Users enter Command Statements, composed of CLI commands and their associated parameters. Statements may be issued from the keyboard for real-time control, or from scripts that automate configuration. For example, when downloading a file, administrators enter the download CLI command along with the IP Address, file name, and file type parameters.

You access the CLI over a HyperTerminal serial connection or via Telnet. During initial configuration, you can use the CLI over a serial port connection to configure an Access Point’s IP address. When accessing the CLI via Telnet, you can communicate with the Access Point over your LAN (switch, hub, etc.), over the Internet, or with a “crossover” Ethernet cable connected directly to your computer’s Ethernet Port. See Using the Command Line Interface (CLI) for more information on the CLI and for a list of CLI commands and parameters.
SNMP Management

In addition to the HTTP and the CLI interfaces, you can also manage and configure an AP using the Simple Network Management Protocol (SNMP). Note that this requires an SNMP manager program, like HP Openview or Castlerock's SNMPc. The AP supports several Management Information Base (MIB) files that describe the parameters that can be viewed and/or configured over SNMP:

- MIB-II (RFC 1213)
- Bridge MIB (RFC 1493)
- Ethernet-like MIB (RFC 1643)
- 802.11 MIB
- AirSPEED Enterprise MIB

SYSTIMAX provides these MIB files on the CD-ROM included with each Access Point. You need to compile one or more of the above MIBs into your SNMP program's database before you can manage an Access Point using SNMP. Refer to the documentation that came with your SNMP manager for instructions on how to compile MIBs.

The Enterprise MIB defines the read and read-write objects that can be viewed or configured using SNMP. These objects correspond to most of the settings and statistics that are available with the other management interfaces. Refer to the Enterprise MIB for more information; the MIB can be opened with any text editor, such as Microsoft Word, Notepad, or WordPad.

SNMPv3 Secure Management

SNMPv3 is based on the existing SNMP framework, but addresses security requirements for device and network management.

The security threats addressed by Secure Management are:

- **Modification of information**: An entity could alter an in-transit message generated by an authorized entity in such a way as to effect unauthorized management operations, including the setting of object values. The essence of this threat is that an unauthorized entity could change any management parameter, including those related to configuration, operations, and accounting.

- **Masquerade**: Management operations that are not authorized for some entity may be attempted by that entity by assuming the identity of an authorized entity.

- **Message stream modification**: SNMP is designed to operate over a connectionless transport protocol. There is a threat that SNMP messages could be reordered, delayed, or replayed (duplicated) to effect unauthorized management operations. For example, a message to reboot a device could be copied and replayed later.

- **Disclosure**: An entity could observe exchanges between a manager and an agent and thereby could learn of notifiable events and the values of managed objects. For example, the observation of a set command that changes passwords would enable an attacker to learn the new passwords.

To address the security threats listed above, SNMPv3 provides the following when secure management is enabled:

- **Authentication**: Provides data integrity and data origin authentication.
- **Privacy (a.k.a Encryption)**: Protects against disclosure of message payload.
- **Access Control**: Controls and authorizes access to managed objects.

The default SNMPv3 username is `administrator`, with SHA authentication, and DES privacy protocol.

SSH (Secure Shell) Management

You may also securely manage the AP using SSH (Secure Shell). The AP supports SSH version 2, for secure remote CLI (Telnet) sessions. SSH provides strong authentication and encryption of session data.

The SSH server (AP) has **host keys** - a pair of asymmetric keys - a **private key** that resides on the AP and a **public key** that is distributed to clients that need to connect to the AP. As the client has knowledge of the server host keys, the client can verify that it is communicating with the correct SSH server.

NOTE

The remainder of this guide describes how to configure an AP using the HTTP Web interface or the CLI interface. For information on how to manage devices using SNMP or SSH, refer to the documentation that came with your SNMP or SSH program. Also, refer to the MIB files for information on the parameters available via SNMP and SSH.
Getting Started

• SYSTIMAX AirSPEED AP541 Hardware Description
 • Dual Band Signal Enhancing Antenna Description
 • Power over Ethernet (PoE)
 • LED Indicators
 • Installation in the Plenum (North America Only)
• Prerequisites (for AP Configuration Only)
• Product Package
• System Requirements
• Initialization
• Latest Software Availability
• Logging into the HTTP Interface

SYSTIMAX AirSPEED AP541 Hardware Description

The SYSTIMAX AirSPEED AP541 is a tri-mode AP that can support 802.11b, 802.11g, or 802.11a clients. The AirSPEED AP541 contains a single embedded 802.11a/b/g radio. The unit is software programmable to operate in one of four modes: 802.11b mode, 802.11g mode, 802.11b/g mode, or 802.11a mode.

⚠️ NOTE

In countries in which 802.11a (5 GHz) is not available for use, the AirSPEED AP541 provides dual-band (802.11b and 802.11g) support only. 802.11a functionality covered in this User Guide is not supported.

SYSTIMAX recommends powering the AirSPEED AP541 with Power over Ethernet (802.3af); alternatively, an external DC power source using the power cord may be used to power the device.

The AirSPEED AP541 includes a power jack, a 10/100 base-T Ethernet port, and an RS-232 serial data communication port. The AirSPEED AP541 cable cover allows access to the power cord and cables and to the reset and reload buttons. The area below the cable cover also serves as a cable routing area.

Figure 2-1 AirSPEED AP541 Cable Cover
Dual Band Signal Enhancing Antenna Description

The AirSPEED AP541 can use internal or external antennas. The AirSPEED AP541 has two diversity antennas embedded for the radio. The internal antennas are arranged to provide both spatial and polarization diversity. The AirSPEED AP541 also has two external antenna connectors for use with the Dual Band Signal Enhancing Antenna (SEA).

The Dual Band SEA is a dual band indoor antenna that works with both 2.4 GHz (802.11b/g) and 5 GHz (802.11a) radios. The Dual Band SEA allows for better antenna placement to enhance the signal for installations in the ceiling or in RF unfriendly environments.

Antenna Diversity Options

With one Dual Band SEA connected to one of the two external antenna connectors on the radio, the AP supports antenna diversity (one embedded antenna and one external SEA) and one of the two embedded antennas is disabled.

With two Dual Band SEAs connected to the two external antenna connectors, the AP supports antenna diversity (two external SEAs), and both embedded antennas are disabled.

Power over Ethernet (PoE)

The AirSPEED AP541 is equipped with an 802.3af-compliant Power over Ethernet (PoE) module. Power over Ethernet delivers both data and power to the Access Point over a single Ethernet cable. SYSTIMAX recommends using a midspan Power over Ethernet device to power the AP as an alternative to the power adaptor. The use of such device will not affect the operation of the AP.

- The Power over Ethernet (PoE) integrated module receives ~48 VDC over a standard Category 5e/6 Ethernet cable.
- To use PoE, you must have a midspan PoE device (also known as a power injector) connected to the network.
- The cable length between the midspan PoE device and the Access Point should not exceed 100 meters (~325 feet). The midspan PoE device is not a repeater and does not amplify the Ethernet data signal.
- If connected to a midspan PoE device and AC power simultaneously, the Access Point draws power from Power over Ethernet.

Refer to Power over Ethernet Interface in the Hardware Specifications for the SYSTIMAX AirSPEED AP541 section for more information.

LED Indicators

The top panel of the AirSPEED AP541 has the following LED indicators:

![LED Indicators](image.png)

Figure 2-2 LED Indicators on the AirSPEED AP541 Top Panel
The LED indicators exhibit the following behavior:

<table>
<thead>
<tr>
<th>Indication</th>
<th>Power</th>
<th>Wireless Interface (802.11a/b/g radio)</th>
<th>Ethernet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Green</td>
<td>AP image running.</td>
<td>Wireless interface is preparing for use.</td>
<td>Ethernet interface is connected at 100 Mbps with no traffic.</td>
</tr>
<tr>
<td>Blinking Green</td>
<td>n/a</td>
<td>Wireless interface is transmitting or receiving wireless packets.</td>
<td>Ethernet interface is connected at 100 Mbps with traffic.</td>
</tr>
<tr>
<td>Solid Yellow</td>
<td>n/a</td>
<td>n/a</td>
<td>Ethernet interface is connected at 10 Mbps with no traffic.</td>
</tr>
<tr>
<td>Blinking Yellow</td>
<td>n/a</td>
<td>n/a</td>
<td>The Ethernet interface is connected at 10 Mbps with traffic.</td>
</tr>
<tr>
<td>Solid Amber</td>
<td>The Bootloader is loading the application software.</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Blinking Amber</td>
<td>The AP is reloading.</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Solid Red</td>
<td>Power On Self Test (POST) running.</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Blinking Red</td>
<td>Rebooting.</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Installation in the Plenum (North America Only)

In an office building, the plenum is the 18 inches of space located above office ceiling tiles used to house the structured cabling infrastructure. All products located in the plenum must comply with specific safety instructions, such as Underwriter Labs (UL) Standard 2043: “Standard for Fire Test for Heat and Visible Smoke Release for Discrete Products and Their Accessories Installed in Air-Handling Spaces”.

The AirSPEED AP541 has been certified under UL Standard 2043 and can be installed in the plenum. SYSTIMAX recommends that an AirSPEED AP541 that is installed in the plenum be powered by Power over Ethernet and use a minimum of one Signal Enhancing Antenna (SEA) per radio.

Prerequisites (for AP Configuration Only)

Before installing an AirSPEED AP541, you need to gather certain network information. The following section identifies the information you need.

<table>
<thead>
<tr>
<th>Network Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Name (SSID of the embedded radio)</td>
<td>You must assign the Access Point a Network Name before wireless users can communicate with it. The clients also need the same Network Name. This is not the same as the System Name, which applies only to the Access Point. The network administrator typically provides the Network Name.</td>
</tr>
<tr>
<td>AP’s IP Address</td>
<td>If you do not have a DHCP server on your network, then you need to assign the Access Point an IP address that is valid on your network.</td>
</tr>
<tr>
<td>HTTP Password</td>
<td>Each Access Point requires a read/write password to access the web interface. The default password is “public”.</td>
</tr>
<tr>
<td>CLI Password</td>
<td>Each Access Point requires a read/write password to access the CLI interface. The default password is “public”.</td>
</tr>
<tr>
<td>SNMP Read Password</td>
<td>Each Access Point requires a password to allow get requests from an SNMP manager. The default password is “public”.</td>
</tr>
<tr>
<td>SNMP Read-Write Password</td>
<td>Each Access Point requires a password to allow get and set requests from an SNMP manager. The default password is “public”.</td>
</tr>
<tr>
<td>SNMPv3 Authentication Password</td>
<td>If Secure Management is enabled, each Access Point requires a password for sending authenticated SNMPv3 messages. The default password is “public”.</td>
</tr>
<tr>
<td>SNMPv3 Privacy Password</td>
<td>If Secure Management is enabled, each Access Point requires a password when sending encrypted SNMPv3 data. The default password is “public”.</td>
</tr>
<tr>
<td>Network Information</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Security Settings</td>
<td>You need to determine what security features you will enable on the Access Point.</td>
</tr>
<tr>
<td>Authentication Method</td>
<td>A primary authentication server may be configured; a backup authentication server is optional. The network administrator typically provides this information.</td>
</tr>
<tr>
<td>Authentication Server Shared Secret</td>
<td>This is a password shared between the Access Point and the RADIUS authentication server (so both passwords must be the same), and is typically provided by the network administrator.</td>
</tr>
<tr>
<td>Authentication Server Authentication Port</td>
<td>This is a port number (default is 1812) and is typically provided by the network administrator.</td>
</tr>
<tr>
<td>Client IP Address Pool Allocation Scheme</td>
<td>The Access Point can automatically provide IP addresses to clients as they sign on. The network administrator typically provides the IP Pool range.</td>
</tr>
<tr>
<td>DNS Server IP Address</td>
<td>The network administrator typically provides this IP Address.</td>
</tr>
<tr>
<td>Gateway IP Address and Subnet Mask</td>
<td>The gateway IP address and subnet mask of the network environment where the Access Point is deployed.</td>
</tr>
</tbody>
</table>
Product Package

- AirSPEED AP541 unit (with integrated 802.11a/b/g radio and Power over Ethernet)
- Power adapter
- One mounting plate and hardware
- One installation CD-ROM that contains the following:
 - Software Installation Wizard
 - ScanTool
 - Solarwinds TFTP software
 - MiBs
 - HTML Help
 - User Guide in PDF format
- Regulatory Compliance flyer
- One Installation Guide

If any of these items are missing or damaged, please contact your reseller.

System Requirements

To begin using an AP, you must have the following minimum requirements:

- A 10Base-T Ethernet or 100Base-TX Fast Ethernet switch or hub or cross-over Ethernet cord
- At least one of the following IEEE 802.11-compliant devices:
 - An 802.11a, 802.11b, or 802.11b/g client device
- A computer that is connected to the same IP network as the AP and has one of the following Web browsers installed:
 - Microsoft Internet Explorer 6 with Service Pack 1 or later and patch Q323308
 - Netscape 7.1 or later

(The computer is required to configure the AP using the HTTP interface.)

Regulatory Compliance and Safety Instructions

Refer to the Regulatory Compliance flyer for radio approvals, safety instructions, and regulatory information.
Initialization

SYSTIMAX provides two tools to simplify the initialization and configuration of an AP:

- **ScanTool**
- **Setup Wizard**

ScanTool is included on the Installation CD-ROM; the Setup Wizard launches automatically the first time you access the HTTP interface.

NOTE

These initialization instructions describe how to configure an AP over an Ethernet connection using ScanTool and the HTTP interface. If you want to configure the unit over the serial port, see Setting IP Address using Serial Port for information on how to access the CLI over a serial connection and Using the Command Line Interface (CLI) for a list of supported commands.

ScanTool

ScanTool is a software utility that is included on the installation CD-ROM. ScanTool allows you to find the IP address of an Access Point by referencing the MAC address in a Scan List, or to assign an IP address if one has not been assigned.

The tool automatically detects the Access Points installed on your network, regardless of IP address, and lets you configure each unit’s IP settings. In addition, you can use ScanTool to download new software to an AP that does not have a valid software image installed (see Client Connection Problems).

To access the HTTP interface and configure the AP, the AP must be assigned an IP address that is valid on its Ethernet network. By default, the AP is configured to obtain an IP address automatically from a network Dynamic Host Configuration Protocol (DHCP) server during boot-up. If your network contains a DHCP server, you can run ScanTool to find out what IP address the AP has been assigned. If your network does not contain a DHCP server, the Access Point’s IP address defaults to 169.254.128.132. In this case, you can use ScanTool to assign the AP a static IP address that is valid on your network.

ScanTool Instructions

Follow these steps to install ScanTool, initialize the Access Point, and perform initial configuration:

1. Locate the unit’s Ethernet MAC address and write it down for future reference. The MAC address is printed on the product label. Each unit has a unique MAC address, which is assigned at the factory.
2. Confirm that the AP is connected to the same LAN subnet as the computer that you will use to configure the AP.
3. Power up, reboot, or reset the AP.
 - Result: The unit requests an IP Address from the network DHCP server.
4. Insert the Installation CD into the CD-ROM drive of the computer that you will use to configure the AP.
 - Result: The installation program will launch automatically.
5. Follow the on-screen instructions to install the Access Point software and documentation.

NOTE

The installation program supports the following operating systems:

- Windows 98SE
- Windows 2000
- Windows NT
- Windows ME
- Windows XP

6. After the software has been installed, double-click the **ScanTool** icon on the Windows desktop to launch the program (if the program is not already running).
 - Result: ScanTool scans the subnet and displays all detected Access Points. The ScanTool’s **Scan List** screen appears, as shown in the following example.
NOTE
If your computer has more than one network adapter installed, you will be prompted to select the adapter that you want ScanTool to use before the Scan List appears. If prompted, select an adapter and click OK. You can change your adapter setting at any time by clicking the Select Adapter button on the Scan List screen. Note that the ScanTool Network Adapter Selection screen will not appear if your computer only has one network adapter installed.

Figure 2-3 Scan List

7. Locate the MAC address of the AP you want to initialize within the Scan List.

NOTE
If your Access Point is not listed in the Scan List, click the Rescan button to update the display. If the unit still does not appear in the list, see Troubleshooting the AirSPEED AP541 for suggestions. Note that after rebooting an Access Point, it may take up to five minutes for the unit to appear in the Scan List.

8. Do one of the following:
 • If the AP has been assigned an IP address by a DHCP server on the network, write down the IP address and click Cancel to close ScanTool. Proceed to Setup Wizard for information on how to access the HTTP interface using this IP address.
 • If the AP has not been assigned an IP address (in other words, the unit is using its default IP address (169.254.128.132), follow these steps to assign it a static IP address that is valid on your network:
 1. Highlight the entry for the AP you want to configure.
 2. Click the Change button.
 The Change screen appears.

Figure 2-4 Scan Tool Change Screen
3. Set IP Address Type to Static.
4. Enter a static IP Address for the AP in the field provided. You must assign the unit a unique address that is valid on your IP subnet. Contact your network administrator if you need assistance selecting an IP address for the unit.
5. Enter your network’s Subnet Mask in the field provided.
6. Enter your network’s Gateway IP Address in the field provided.
7. Enter the SNMP Read/Write password in the Read/Write Password field (for new units, the default SNMP Read/Write password is “public”).

NOTE
The TFTP Server IP Address and Image File Name fields are only available if ScanTool detects that the AP does not have a valid software image installed. See Client Connection Problems.

8. Click OK to save your changes.
 — Result: The Access Point will reboot automatically and any changes you made will take effect.
9. When prompted, click OK a second time to return to the Scan List screen.
10. Click Cancel to close the ScanTool.
11. Proceed to Setup Wizard for information on how to access the HTTP interface.

Setup Wizard
The first time you connect to an AP’s HTTP interface, the Setup Wizard launches automatically. The Setup Wizard provides step-by-step instructions for how to configure the Access Point’s basic operating parameter, such as Network Name, IP parameters, system parameters, and management passwords.

Setup Wizard Instructions
Follow these steps to access the Access Point’s HTTP interface and launch the Setup Wizard:
1. Open a Web browser on a network computer.
 – The HTTP interface supports the following Web browsers:
 • Microsoft Internet Explorer 6 with Service Pack 1 or later
 • Netscape 7.1 or later
2. If necessary, disable the browser’s Internet proxy settings. For Internet Explorer users, follow these steps:
 – Select Tools > Internet Options.
 – Click the Connections tab.
 – Click LAN Settings.
 – If necessary, remove the check mark from the Use a proxy server box.
 – Click OK twice to save your changes and return to Internet Explorer.
3. Enter the Access Point’s IP address in the browser’s Address field and press Enter.
 – This is either the dynamic IP address assigned by a network DHCP server or the static IP address you manually configured. See ScanTool for information on how to determine the unit’s IP address and manually configure a new IP address, if necessary.
 – Result: The Enter Network Password screen appears.

![Figure 2-5 Enter Network Password](image-url)
4. Enter the HTTP password in the **Password** field. Leave the **User Name** field blank. For new units, the default HTTP password is “public.”
 - Result: The Setup Wizard will launch automatically.

5. Click **Setup Wizard** to begin. If you want to configure the AP without using the Setup Wizard, click **Exit** and see **Performing Advanced Configuration**.

 The Setup Wizard supports the following navigation options:
 - **Save & Next Button**: Each **Setup Wizard** screen has a **Save & Next** button. Click this button to submit any changes you made to the unit’s parameters and continue to the next page. The instructions below describe how to navigate the Setup Wizard using the **Save & Next** buttons.
 - **Navigation Panel**: The Setup Wizard provides a navigation panel on the left-hand side of the screen. Click the link that corresponds to the parameters you want to configure to be taken to that particular configuration screen. Note that clicking a link in the navigation panel will not submit any changes you made to the unit’s configuration on the current page.
 - **Exit**: The navigation panel also includes an **Exit** option. Click this link to close the Setup Wizard at any time.

 CAUTION
 If you exit from the Setup Wizard, any changes you submitted (by clicking the **Save & Next** button) up to that point will be saved to the unit but will not take effect until it is rebooted.

6. Configure the System Configuration settings and click **Save & Next**. See **System** for more information.
7. Configure the Access Point’s basic IP Configuration settings, if necessary, and click **Save & Next**. See **Basic IP Parameters** for more information.
8. On the Password Configuration screen, assign the AP new passwords to prevent unauthorized access and click **Save & Next**. Each management interface has its own password:
 - SNMP Read Password
 - SNMP Read-Write Password
 - CLI Password
 - HTTP (Web) Password
 By default, each of these passwords is set to “public”. See **Passwords** for more information.
9. Configure the basic Wireless Interface Configuration settings:
 - Select the Operational Mode as follows and click **Save & Next**:
 - 802.11b mode only: The radio uses the 802.11b standard only.
 - 802.11g mode only: The radio is optimized to communicate with 802.11g devices. This setting will provide the best results if this radio interface will only communicate with 802.11g devices.
 - 802.11b/g mode: This is the default mode. Use this mode if you want to support a mix of 802.11b and 802.11g devices.
— 802.11 a only mode: The radio uses the 802.11a standard only.

NOTE
In countries in which 802.11a (5 GHz) is not available for use, the AirSPEED AP541 provides dual-band (802.11b and 802.11g) support only. 802.11a functionality covered in this User Guide is not supported.

In general, you should use either 802.11g only mode (if you want to support 802.11g devices only) or 802.11b/g mode to support a mix of 802.11b and 802.11g devices.

- Configure the following available options and click **Save & Next**:
 - **Primary Network Name (SSID)**: Enter a Network Name (between 1 and 32 characters long) for the wireless network. You must configure each wireless client to use this name as well. Note that the AirSPEED AP541 supports up to 16 SSIDs and VLANs. Please refer to Performing Advanced Configuration for detailed information on configuring multiple SSIDs, VLANs, and security modes.

NOTE
Do not use quotation marks (single or double) in the Network Name; this will cause the AP to misinterpret the name.

- **Auto Channel Select**: By default, the AP scans the area for other Access Points and selects the best available communication channel, either a free channel (if available) or the channel with the least amount of interference. Remove the check mark to disable this option. See Dynamic Frequency Selection (DFS) for more information and Radio Specifications for a list of available channels.

- **Frequency Channel**: When Auto Channel Select is enabled, this field is read-only and displays the Access Point’s current operating channel. When Auto Channel Select is disabled, you can specify the Access Point’s channel. If you decide to manually set the unit’s channel, ensure that nearby devices do not use the same frequency. Available channels vary based on regulatory domain. See Dynamic Frequency Selection (DFS) for more information and Radio Specifications for a list of available channels.

- **Transmit Rate**: Use the drop-down menu to select a specific transmit rate for the AirSPEED AP541’s radio.
 - For 802.11b only mode, choose between 1, 2, 5.5, 11 Mbits/s, and Auto Fallback.
 - For 802.11g only mode, choose between 6, 9, 12, 18, 24, 36, 48, 54 Mbits/s, and Auto Fallback.
 - For 802.11b/g mode, choose between 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, 54 Mbits/s, and Auto Fallback.
 - For 802.11a only mode, choose between 6, 9, 12, 18, 24, 36, 48, 54 Mbits/s, and Auto Fallback.
 - The Auto Fallback feature allows the AP to select the best transmit rate based on the cell size.

NOTE
In countries in which 802.11a (5 GHz) is not available for use, the AirSPEED AP541 provides dual-band (802.11b and 802.11g) support only. 802.11a functionality covered in this User Guide is not supported.

NOTE
Additional advanced settings are available in the Interfaces tab (Configure > Interfaces). See Interfaces for more information.

See SSID/VLAN/Security for a description of security features, VLAN capabilities, and detailed configuration procedures.

10. Review the configuration summary. If you want to make any additional changes, use the navigation panel on the left-hand side of the screen to return to an earlier screen. After making a change, click **Save & Next** to save the change and proceed to the next screen.

11. When finished, click **Reboot** on the Summary screen to restart the AP and apply your changes.
Latest Software Availability

SYSTIMAX periodically releases updated software for the AP at http://www.systimax.com. SYSTIMAX recommends that you check the Web site for the latest updates after you have installed and initialized the unit.

Setup your TFTP Server

A Trivial File Transfer Protocol (TFTP) server allows you to transfer files across a network. You can upload files from the AP for backup or copying, and you can download the files for configuration and AP Image upgrades. The Solarwinds TFTP server software is located on the AirSPEED AP541 Installation CD-ROM. You can also download the latest TFTP software from Solarwind’s Web site at http://www.solarwinds.net.

NOTE

If a TFTP server is not available in the network, you can perform similar file transfer operations using the HTTP interface.

After the TFTP server is installed:

• Check to see that TFTP is configured to point to the directory containing the AP Image.
• Make sure you have the proper TFTP server IP address, the proper AP Image file name, and that the TFTP server is operational.
• Make sure the TFTP server is configured to both Transmit and Receive files, with no automatic shutdown or time-out.

Download Updates from your TFTP Server using the Web Interface

2. Copy the latest software updates to your TFTP server.
3. In the Web Interface, click the Commands button and select the Update AP tab.
4. Enter the IP address of your TFTP server in the field provided.
5. Enter the File Name (including the file extension). Enter the full directory path and file name. If the file is located in the default TFTP directory, you need enter only the file name.
6. Select the File Type from the drop-down menu (use Image for software updates).
7. Select Download & Reboot from the File Operation drop-down menu.
8. Click OK.
9. The Access Point will reboot automatically when the download is complete.

Download Updates from your TFTP Server using the CLI Interface

2. Copy the latest software updates to your TFTP server.
3. Open the CLI interface via Telnet or a serial connection.
4. Enter the CLI password when prompted.
5. Enter the command: download <tftpaddr> <filename> img
 – Result: The download will begin. Be patient while the image is downloaded to the Access Point.
6. When the download is complete, type reboot 0 and press Enter.

NOTE

See Using the Command Line Interface (CLI) for more information.
Logging into the HTTP Interface

Once the AP has a valid IP Address and an Ethernet connection, you may use your web browser to monitor and configure the AP. (To configure and monitor using the command line interface, see Using the Command Line Interface (CLI).)

1. Open a Web browser on a network computer.

 NOTE

 The HTTP interface supports the following Web browser:

 - Microsoft Internet Explorer 6 with Service Pack 1 or later
 - Netscape 7.1 or later

2. If necessary, disable the Internet proxy settings. For Internet Explorer users, follow these steps:

 - Select **Tools > Internet Options**.
 - Click the **Connections** tab.
 - Click **LAN Settings**.
 - If necessary, remove the check mark from the **Use a proxy server** box.
 - Click **OK** twice to save your changes and return to Internet Explorer.

3. Enter the Access Point’s IP address in the browser’s **Address** field and press **Enter**.

 NOTE

 The default IP address of the AP is **169.254.128.132**.

 The **Enter Network Password** screen is displayed.

 ![Figure 2-7 Enter Network Password Screen](image)

4. Leave the **User Name** field blank. Enter the HTTP password in the **Password** field and click **OK**. (By default, the HTTP password is “public”).

 The **System Status** screen appears.
The buttons on the left of the screen provide access to the monitoring and configuration options for the AP. See Viewing Status Information for more information about the Status screen.

The Command Line Interface (CLI) also provides a method for monitoring and configuring the AP using Telnet or a serial connection. For more information about monitoring and configuring the AP with the CLI, refer to Using the Command Line Interface (CLI).

Related Topics

The Setup Wizard helps you configure the basic AP settings required to get the unit up and running. The AP supports many other configuration and management options. The remainder of this User Guide describes these options in detail.

- See Performing Advanced Configuration for information on configuration options that are available within the Access Point's HTTP interface.
- See Monitoring the AirSPEED AP541 for information on the statistics displayed within the Access Point's HTTP interface.
- See Performing Commands for information on the commands supported by the Access Point's HTTP interface.
- See Troubleshooting the AirSPEED AP541 for troubleshooting suggestions.
- See Using the Command Line Interface (CLI) for information on the CLI interface and for a list of CLI commands.
Viewing Status Information

The first screen displayed after Logging into the HTTP Interface is the **System Status** screen. You can always return to this screen by clicking the **Status** button.

![System Status Screen]

The sections of the **System Status** screen provide the following information:

- **System Status**: This area provides system level information, including the unit's IP address and contact information. See **System** for information on these settings.
- **System Alarms**: System traps (if any) appear in this area. Each trap identifies a specific severity level: Critical, Major, Minor, and Informational. See **Alarms** for a list of possible alarms.

From this screen, you can also access the AP’s monitoring and configuration options by clicking on the buttons on the left of the screen.
Performing Advanced Configuration

- **System**: Configure specific system information such as system name and contact information.
- **Network**: Configure IP settings, DNS Client, DHCP Server, DHCP Relay agent, DHCP Relay Servers, and Link Integrity.
- **Interfaces**: Configure the Access Point’s Wireless and Ethernet interfaces. Configure a Wireless Distribution System (WDS).
- **Management**: Configure the Access Point’s management passwords, IP access table, and services such as secure or restricted access to the AP via SNMPv3, HTTPS, or CLI. Configure Secure Management, SSL, Secure Shell (SSH), and RADIUS based access management. Configure Automatic Configuration for Static IP, Configure Hardware Reset.
- **Filtering**: Configure Ethernet Protocol filters, Static MAC Address filters, Advanced filters, and Port filters.
- **Alarms**: Configure the Alarm (SNMP Trap) Groups, the Alarm Host Table, and the Syslog features.
- **Bridge**: Configure the Spanning Tree Protocol, Storm Threshold protection, Intra BSS traffic, and Packet Forwarding.
- **QoS**: Configure Wi-Fi Multimedia/Quality of Service parameters and QoS policies.
- **RADIUS Profiles**: Configure RADIUS features such as RADIUS Access Control and Accounting.
- **SSID/VLAN/Security**: Configure security features such as MAC Access Control, WPA, 802.11i (WPA2), WEP Encryption, and 802.1x. Configure up to 16 VLAN and SSID pairs, and assign Security and RADIUS Profiles for each pair.

To configure the AP using the HTTP/HTTPS interface, you must first log in to a web browser. See Logging into the HTTP Interface for instructions.

You may also configure the AP using the command line interface. Refer to Using the Command Line Interface (CLI) for more information.
To configure the AP via HTTP/HTTPS:
1. Click the **Configure** button located on the left-hand side of the screen. The main **Configure** screen will be displayed.

![Configure Main Screen](image)

- **System** is used to configure specific system information such as system name and contact information.
- **Network** is used to configure IP settings, DNS client, DHCP server, DHCP relay agent, and Link Integrity.
- **Interfaces** is used to configure the access point operational modes and interfaces Wireless and Ethernet.
- **Management** is used to configure the access point management Passwords, IP Access Table, Services and Alert Configuration, and Configurable Hardware Reset to Default Features.
- **Filtering** is used to configure Ethernet Protocol filters, Static MAC Address filters, Advanced filters, and Port filters.
- **Alerts** is used to enable and disable Alarm (SNMP Trap) Groups, configure the Alarm Host Table, the syslog, and the Web Scan feature.
- **QoS** is used to configure the Quality of Service (QoS) feature. This tab can be used to configure QoS Policies, Priority Mapping and DQCA values.
- **RADIUS Profiles** is used to configure RADIUS Profiles for servers used for MAC based RADIUS Authentication, EAP-PEAP, and Accounting.
- **SSID/LAN/Security** is used to configure multiple SSID's for each wireless interface(s), WLAN properties, PMAC Access Control, and Security Profiles.

Figure 4-1 Configure Main Screen

2. Click the tab that corresponds to the parameter you want to configure. For example, click **Network** to configure the Access Point’s TCP/IP settings.

Each **Configure** tab is described in the remainder of this chapter.
System

You can configure and view the following parameters within the System Configuration screen:

- **Name:** The name assigned to the AP. Refer to the Dynamic DNS Support and Access Point System Naming Convention sections for rules on naming the AP.
- **Location:** The location where the AP is installed.
- **Contact Name:** The name of the person responsible for the AP.
- **Contact Email:** The email address of the person responsible for the AP.
- **Contact Phone:** The telephone number of the person responsible for the AP.
- **Object ID:** This is a read-only field that displays the Access Point’s system object identification number; this information is useful if you are managing the AP using SNMP.
- **Ethernet MAC Address:** This is a read-only field that displays the unique MAC (Media Access Control) address for the Access Point's Ethernet interface. The MAC address is assigned at the factory.
- **Descriptor:** This is a read-only field that reports the Access Point’s name, serial number, current image software version, and current bootloader software version.
- **Up Time:** This is a read-only field that displays how long the Access Point has been running since its last reboot.

![System Screen](image)

Dynamic DNS Support

DNS is a distributed database mapping the user readable names and IP addresses (and more) of every registered system on the Internet. Dynamic DNS is a lightweight mechanism that allows for modification of the DNS data of host systems whose IP addresses change dynamically. Dynamic DNS is usually used in conjunction with DHCP for assigning meaningful names to host systems whose IP addresses change dynamically.

Access Points provide Dynamic DNS support by adding the host name (option 12) in DHCP Client messages, which is used by the DHCP server to dynamically update the DNS server.

Access Point System Naming Convention

The Access Point's system name is used as its host name. In order to prevent Access Points with default configurations from registering similar host names in DNS, the default system name of the Access Point is uniquely generated. Access Points generate unique system names by appending the last 3 bytes of the Access Point's MAC address to the default system name.
The system name must be compliant with the encoding rules for host name as per DNS RFC 1123. The DNS host name encoding rules are:

- Alphanumeric or hyphen characters are allowed.
- The name cannot start or end with a hyphen.
- The name cannot start with a digit.
- The number of characters has to be 63 or less. (Currently the system name length is limited to 32 bytes).

Image upgrades could cause the system to boot with an older system name format that is not DNS compliant. To prevent problems with dynamic DNS after an image upgrade, the system name will automatically be converted to a DNS compliant system name.

The rules of conversion of older system names are:

- If the length is greater than 63 characters, the string is truncated.
- All invalid characters at the beginning or end of the string are replaced with the character 'X'.
- All other invalid characters are replaced with hyphens.
Network
The Network tab contains the following sub-tabs:
- IP Configuration
- DHCP Server
- DHCP Relay Agent
- Link Integrity

IP Configuration
This tab is used to configure the internet (TCP/IP) settings for the Access Point.
These settings can be either entered manually (static IP address, subnet mask, and gateway IP address) or obtained automatically (dynamic). The DNS Client functionality can also be configured, so that host names used for configuring the Access Point can be resolved to their IP addresses.

![IP Configuration Screen]

You can configure and view the following parameters within the **IP Configuration** sub-tab:

NOTE
You must reboot the Access Point in order for any changes to the Basic IP or DNS Client parameters to take effect.

Basic IP Parameters
- **IP Address Assignment Type:** Set this parameter to **Dynamic** to configure the Access Point as a Dynamic Host Configuration Protocol (DHCP) client; the Access Point will obtain IP settings from a network DHCP server automatically during boot-up. If you do not have a DHCP server or if you want to manually configure the Access Point’s IP settings, set this parameter to **Static**.
- **IP Address:** The Access Point’s IP address. When IP Address Assignment Type is set to Dynamic, this field is read-only and reports the unit’s current IP address. The Access Point will default to 169.254.128.132 if it cannot obtain an address from a DHCP server.
• **Subnet Mask**: The Access Point’s subnet mask. When IP Address Assignment Type is set to Dynamic, this field is read-only and reports the unit’s current subnet mask. The subnet mask will default to 255.255.0.0 if the unit cannot obtain one from a DHCP server.

• **Gateway IP Address**: The IP address of the Access Point’s gateway. When IP Address Assignment Type is set to Dynamic, this field is read-only and reports the IP address of the unit’s gateway. The gateway IP address will default to 169.254.128.133 if the unit cannot obtain an address from a DHCP server.

DNS Client

If you prefer to use host names to identify network servers rather than IP addresses, you can configure the AP to act as a Domain Name Service (DNS) client. When this feature is enabled, the Access Point contacts the network’s DNS server to translate a host name to the appropriate network IP address. You can use this DNS Client functionality to identify RADIUS servers by host name.

• **Enable DNS Client**: Place a check mark in the box provided to enable DNS client functionality. Note that this option must be enabled before you can configure the other DNS Client parameters.

• **DNS Primary Server IP Address**: The IP address of the network’s primary DNS server.

• **DNS Secondary Server IP Address**: The IP address of a second DNS server on the network. The Access Point will attempt to contact the secondary server if the primary server is unavailable.

• **DNS Client Default Domain Name**: The default domain name for the Access Point’s network (for example, “systimax.com”). Contact your network administrator if you need assistance setting this parameter.

Advanced

• **Default TTL (Time to Live)**: Time to Live (TTL) is a field in an IP packet that specifies how long in seconds the packet can remain active on the network. The Access Point uses the default TTL for packets it generates for which the transport layer protocol does not specify a TTL value. This parameter supports a range from 0 to 255. By default, TTL is 64.
DHCP Server

If your network does not have a DHCP Server, you can configure the AP as a DHCP server to assign dynamic IP addresses to Ethernet nodes and wireless clients.

⚠️ CAUTION

Make sure there are no other DHCP servers on the network and do not enable the DHCP server without checking with your network administrator first, as it could disrupt normal network operation. Also, the AP must be configured with a static IP address before enabling this feature.

When the DHCP Server functionality is enabled, you can create one or more IP address pools from which to assign addresses to network devices.

![DHCP Server Configuration Screen]

Figure 4-4 DHCP Server Configuration Screen

You can configure and view the following parameters within the **DHCP Server Configuration** screen:

- **Enable DHCP Server:** Place a check mark in the box provided to enable DHCP Server functionality.

⚠️ NOTE

You cannot enable the DHCP Server functionality unless there is at least one IP Pool Table entry configured.

- **Subnet Mask:** This field is read-only and reports the Access Point’s current subnet mask. DHCP clients that receive dynamic addresses from the AP will be assigned this same subnet mask.
- **Gateway IP Address:** The AP will assign the specified address to its DHCP clients.
- **Primary DNS IP Address:** The AP will assign the specified address to its DHCP clients.
- **Secondary DNS IP Address:** The AP will assign the specified address to its DHCP clients.
- **Number of IP Pool Table Entries:** This is a read-only field that reports the number of entries in the IP Pool Table.
- **IP Pool Table:** Each entry in this table specify a range of IP addresses that the AP can assign to its wireless clients. Click **Add** to create a new entry. Click **Edit** to change an existing entry. Each entry contains the following field:
 - **Start IP Address**
 - **End IP Address**
– **Default Lease Time (optional):** The default time value for clients to retain the assigned IP address. DHCP automatically renews IP Addresses without client notification. This parameter supports a range between 0 and 86400 seconds. The default is 86400 seconds.

– **Maximum Lease Time (optional):** The maximum time value for clients to retain the assigned IP address. DHCP automatically renews IP Addresses without client notification. This parameter supports a range between 0 and 86400 seconds. The default is 86400 seconds.

– **Comment (optional)**

– **Status:** IP Pools are enabled upon entry in the table. You can also disable or delete entries by changing this field’s value.

NOTE
You must reboot the Access Point before changes to any of these DHCP server parameters take effect.

DHCP Relay Agent

When enabled, the DHCP relay agent forwards DHCP requests to the set DHCP server.

Click the Configure > Network tab > DHCP R A to configure DHCP Relay Agent servers and enable the DHCP Relay Agent.

NOTE
At least one DHCP server must be enabled before DHCP Relay Agent can be enabled.

The DHCP Relay functionality of the AP supports Option 82 and sends the system name of the AP (as a NAS identifier) as a sub-option of Option 82.

The AP makes a DHCP Request for lease renewal five minutes ahead of the expiration of the Rebinding time as specified in the DHCP Offer from the DHCP server obtained during the last renewal.

Figure 4-5 DHCP Relay Agent

DHCP Server IP Address Table

To add entries to the table of DHCP Relay Agents, click Add in the DHCP Server IP Address Table; the following window is displayed.

The AP supports the configuration of a maximum of 10 server settings in the DHCP Relay Agents server table. At least one server must be configured to enable DHCP Relay.
Link Integrity

The Link Integrity feature checks the link between the AP and the nodes on the Ethernet backbone. These nodes are listed by IP address in the Link Integrity IP Address Table. The AP periodically pings the nodes listed within the table. If the AP loses network connectivity (that is, the ping attempts fail), the AP disables its wireless interface(s). Note that this feature does not affect WDS links (if WDS links are configured and enabled).

You can configure and view the following parameters within the **Link Integrity Configuration** screen:

- **Enable Link Integrity**: Place a check mark in the box provided to enable Link Integrity.
- **Poll Interval (milliseconds)**: The interval between link integrity checks. Range is 500 - 15000 ms in increments of 500 ms; default is 500 ms.
- **Poll Retransmissions**: The number of times a poll should be retransmitted before the link is considered down. Range is 0 to 255; default is 5.
- **Target IP Address Entry**: This entry specifies the IP address of a host on the network that the AP will periodically poll to confirm connectivity. The table can hold up to five entries. By default, all five entries are set to 0.0.0.0. Click **Edit** to update one or more entries. Each entry contains the following field:
 - **Target IP Address**
 - **Comment (optional)**
 - **Status**: Set this field to **Enable** to specify that the Access Point should poll this device. You can also disable an entry by changing this field’s value to **Disable**.

Figure 4-6 DHCP Server IP Address Table - Add Entries

To edit or delete entries in the table, click **Edit**; the following window appears. Make your changes and click **OK**.

Figure 4-7 DHCP Server IP Address Table - Edit Entries

Table:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Comment</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.34.0.5</td>
<td></td>
<td>Enable</td>
</tr>
</tbody>
</table>
Figure 4-8 Link Integrity Configuration Screen
Interfaces

From the Interfaces tab, you configure the Access Point's operational mode, power control settings, wireless interface settings and Ethernet settings. You may also configure a Wireless Distribution System for AP-to-AP communications. The Interfaces tab contains the following sub-tabs:

- **Operational Mode**
 - **Super Mode and Turbo Mode**
 - **Enable 802.11d**: enables IEEE 802.11d support for additional regulatory domains. Refer to the IEEE 802.11d Support for Additional Regulatory Domains and Configuring 802.11d Support sections.
 - **ISO/IEC 3166-1 Country Code**: the country (regulatory domain) where the AP is located.
 - **Enable TX Power Control**: enables TX Power Control to control transmit power of 802.11-enabled clients within an IBSS. Refer to the TX Power Control and Configuring TX Power Control sections.
 - **Transmit Power Level**: the power level of the interface when IBSS Power Control is enabled. Allowed values are 100%, 50%, 25%, or 12.5%.

- **Wireless (802.11a/b/g radio)**

- **Ethernet**
Operational Mode

From this tab, you can configure and view the operational mode for the Wireless interface.

The Wireless (802.11a/b/g) interface can be configured to operate in the following modes:

- **802.11b mode only**: The radio uses the 802.11b standard only.
- **802.11g mode only**: The radio is optimized to communicate with 802.11g devices. This setting will provide the best results if this radio interface will only communicate with 802.11g devices.
- **802.11b/g mode**: This is the default mode. Use this mode if you want to support a mix of 802.11b and 802.11g devices.
- **802.11a only mode**: The radio uses the 802.11a standard only.

NOTE

In countries in which 802.11a (5 GHz) is not available for use, the AirSPEED AP541 provides dual-band (802.11b and 802.11g) support only. 802.11a functionality covered in this User Guide is not supported.

In general, you should use either 802.11g only mode (if you want to support 802.11g devices only) or 802.11b/g mode to support a mix of 802.11b and 802.11g devices.

Super Mode and Turbo Mode

Super mode improves throughput between the Access Point and wireless clients that support this capability. For wireless clients that support this capability, the AP will negotiate and treat them accordingly; for clients that do not support Super mode, the AP will treat them as normal wireless clients.

Super mode can be configured only when the wireless operational mode is one of the following:

- 802.11g only mode
- 802.11b/g mode
- 802.11a only mode

Dynamic Turbo mode is supported in 802.11a and 802.11g mode. Dynamic Turbo mode supports turbo speeds at twice the standard 802.11a or 802.11g data rates, and also dynamically switches between Turbo mode speeds and normal speeds depending on the wireless client. If Turbo mode is enabled, then this is displayed in the web UI and the transmit speeds and channels pull-down menus are updated with the valid values.

When Turbo mode is enabled, only a subset of the wireless channels on both the 2.4 GHz and 5.0 GHz spectrum can be used.

Turbo mode can be enabled only when Super Mode has already been enabled.

The Super 802.11g mode, Super 802.11a mode, and Turbo 802.11g mode are supported in all regulatory domains. However, Turbo 802.11a mode is not available in the Japan regulatory domain.

IEEE 802.11d Support for Additional Regulatory Domains

The IEEE 802.11d specification allows conforming equipment to operate in more than one regulatory domain. IEEE 802.11d support allows the AP to broadcast its radio’s regulatory domain information in its beacon and probe responses to clients. This allows clients to passively learn what country they are in and only transmit in the allowable spectrum. When a client enters a regulatory domain, it passively scans to learn at least one valid channel, i.e., a channel upon which it detects IEEE Standard 802.11 frames.

The beacon frame contains information on the country code, the maximum allowable transmit power, and the channels to be used for the regulatory domain.

The same information is transmitted in probe response frames in response to a client’s probe requests. Once the client has acquired the information required to meet the transmit requirements of the regulatory domain, it configures itself for operation in the regulatory domain.

The radio determines the regulatory domain the AP is operating in. Depending on the regulatory domain, a default country code is chosen that is transmitted in the beacon and probe response frames.

Configuring 802.11d Support

Perform the following procedure to enable 802.11d support, and select the country code:

1. Click **Configure > Interfaces > Operational Mode.**
2. Select **Enable 802.11d**.
4. Click **OK**.
5. Configure Transmit Power Control and transmit power level if required.

TX Power Control

Transmit Power Control uses standard 802.11d frames to control transmit power within an infrastructure BSS. This method of power control is considered to be an interim way of controlling the transmit power of 802.11d enabled clients in lieu of implementation of 802.11h.

The Transmit Power Control feature lets the user configure the transmit power level of the wireless interface at one of four levels:

- 100% of the maximum transmit power level defined by the regulatory domain
- 50%
- 25%
- 12.5%

When Transmit Power Control is enabled, the transmit power level of the radio in the AP is set to the configured transmit power level. The power level is advertised in Beacon and Probe Response frames as the 802.11d maximum transmit power level.

When an 802.11d-enabled client learns the regulatory domain related information from Beacon and Probe Response frames, it learns the power level advertised in Beacon and Probe response frames as the maximum transmit power of the regulatory domain and configures itself to operate with that power level.

As a result, the transmit power level of the BSS is configured to the power level set in the AP (assuming that the BSS has only 802.11d enabled clients and an 802.11d enabled AP).

Configuring TX Power Control

1. Click **Configure > Interfaces > Operational Mode**.
2. Select **Enable Transmit Power Control**.
3. Select the transmit power level for the wireless interface from the Wireless-A: Transmit Power Level drop-down menu.
4. Click **OK**.
Figure 4-9 Operational Mode Screen
Wireless (802.11a/b/g radio)

You can view and configure the following parameters for the Wireless interface.

NOTE

You must reboot the Access Point before any changes to these parameters take effect.

- **Physical Interface Type:** Depending on the Operational Mode, this field reports:
 - For 802.11b mode only: "802.11b (CCK/DSSS 2.4 GHz)"
 - For 802.11g mode: "802.11g (OFDM/DSSS 2.4 GHz)"
 - For 802.11b/g mode: "802.11b/g (ERP-CCK/DSSS/OFDM 2.4 GHz)"
 - For 802.11a mode: "802.11a (OFDM 5 GHz)."

OFDM stands for Orthogonal Frequency Division Multiplexing; this is the name for the radio technology used by 802.11a devices. DSSS stands for Direct Sequence Spread Spectrum; this is the name for the radio technology used by 802.11b devices.

NOTE

In countries in which 802.11a (5 GHz) is not available for use, the AirSPEED AP541 provides dual-band (802.11b and 802.11g) support only. 802.11a functionality covered in this User Guide is not supported.

- **MAC Address:** This is a read-only field that displays the unique MAC (Media Access Control) address for the Access Point’s wireless interface. The MAC address is assigned at the factory.
- **Regulatory Domain:** Reports the regulatory domain for which the AP is certified. Not all features or channels are available in all countries. The available regulatory domains include:
 - For 802.11a:
 - FCC: U.S., Canada, Mexico, Argentina, Australia
 - ETSI: European Union (with the exception of Hungary and the Czech Republic), Brazil, Iceland, Norway, Saudi Arabia, Switzerland
 - ASIA: China, Hong Kong, South Korea
Performing Advanced Configuration

For 802.11b/g:
- FCC: U.S., Canada, Mexico, Argentina, Australia
- ETSI: European Union (with the exception of Hungary and the Czech Republic), Brazil, China, Iceland, India, Hong Kong, Norway, Saudi Arabia, Singapore, South Korea, Switzerland, Taiwan, United Arab Emirates
- TELEC: Japan

- Network Name (SSID): Enter a Network Name (between 1 and 32 characters long) for the primary wireless network. You must configure each wireless client using this network to use this name as well. Additional SSIDs and VLANs may be configured under Configure > SSID/VLAN/Security. Up to 16 SSID/VLAN pairs may be configured per wireless interface.

NOTE
Do not use quotation marks (single or double) in the Network Name; this will cause the AP to misinterpret the name.

- Auto Channel Select: The AP scans the area for other Access Points and selects a free or relatively unused communication channel. This helps prevent interference problems and increases network performance. By default this feature is enabled. See Dynamic Frequency Selection (DFS) for more information and Radio Specifications for a list of available channels.

- Frequency Channel: When Auto Channel Select is enabled, this field is read-only and displays the Access Point’s current operating channel. When Auto Channel Select is disabled, you can specify the Access Point’s operating channel. If you decide to manually set the unit’s channel, ensure that nearby devices do not use the same frequency (unless you are setting up WDS links). Available Channels vary based on regulatory domain. See Dynamic Frequency Selection (DFS) for more information and Radio Specifications for a list of available channels.

- Transmit Rate: Select a specific transmit rate for the AP. The values available depend on the Operational Mode. Auto Fallback is the default setting; it allows the AP to select the best transmit rate based on the cell size.
 - For 802.11b only -- Auto Fallback, 1, 2, 5.5, 11 Mbits/s. Auto Fallback is the default setting; it allows the AP unit to select the best transmit rate based on the cell size.
 - For 802.11g only -- Auto Fallback, 6, 9, 12, 18, 24, 36, 48, 54 Mbits/s
 - For 802.11b/g -- Auto Fallback, 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, 54 Mbits/s
 - For 802.11a only -- Auto Fallback, 6, 9, 12, 18, 24, 36, 48, 54 Mbits/s.

NOTE
In countries in which 802.11a (5 GHz) is not available for use, the AirSPEED AP541 provides dual-band (802.11b and 802.11g) support only. 802.11a functionality covered in this User Guide is not supported.

- DTIM Period: The Deferred Traffic Indicator Map (DTIM) is used with clients that have power management enabled. DTIM should be left at 1, the default value, if any clients have power management enabled. This parameter supports a range between 1 and 255.

- RTS/CTS Medium Reservation: This parameter affects message flow control and should not be changed under normal circumstances. Range is 0 to 2347. When set to a value between 0 and 2347, the Access Point uses the RTS/CTS mechanism for packets that are the specified size or greater. When set to 2347 (the default setting), RTS/CTS is disabled. See RTS/CTS Medium Reservation for more information.

- Closed System: Check this box to allow only clients configured with the Access Point’s specific Network Name to associate with the Access Point. When enabled, a client configured with the Network Name “ANY” cannot connect to the AP. This option is disabled by default.

- Wireless Service Status: Select shutdown to shutdown the wireless service on a wireless interface, or resume to resume wireless service. See Wireless Service Status for more information.

- Load Balancing Max Clients: Load balancing distributes clients among available access points. Enter a number between 1 and 63 to specify the maximum number of clients to allow.

- Wireless Distribution System: A Wireless Distribution system can be used to establish point-to-point (i.e. wireless backhaul) connections with other access points. See Wireless Distribution System (WDS) for configuration information.
Dynamic Frequency Selection (DFS)

The European Telecommunications Standards Institute (ETSI) requires that 802.11a Access Points operating in the middle frequency band use a technique called Dynamic Frequency Selection to prevent interference with radar systems and other devices that occupy the 5 GHz band.

802.11a APs certified in the ETSI regulatory domain (see Affected Countries) and operating in the middle frequency band thus select an operating channel through a combination of Auto Channel Select (ACS) and Dynamic Frequency Selection. During boot-up, ACS scans the available channels and selects the best channel. When the AP enters normal operation, DFS works in the background to detect radar interference on that channel. If interference is detected, the AP automatically reboots, and ACS re-scans and selects a better channel that is free of interference.

If ACS is disabled, only channels in the lower frequency band are available for use:

- 36: 5.18 GHz (default)
- 40: 5.200 GHz
- 44: 5.220 GHz
- 48: 5.240 GHz

Affected Countries

The following countries are certified in the ETSI regulatory domain for operation in the 5 GHz band:

- Austria
- Belgium
- Brazil
- Cyprus
- Denmark
- Estonia
- Finland
- France
- Germany
- Greece
- Iceland
- Ireland
- Italy
- Latvia
- Lithuania
- Luxembourg
- Malta
- Netherlands
- Norway
- Poland
- Portugal
- Saudi Arabia
- Spain
- Sweden
- Switzerland
- UK

RTS/CTS Medium Reservation

The 802.11 standard supports optional RTS/CTS communication based on packet size. Without RTS/CTS, a sending radio listens to see if another radio is already using the medium before transmitting a data packet. If the medium is free, the sending radio transmits its packet. However, there is no guarantee that another radio is not transmitting a packet at the same time, causing a collision. This typically occurs when there are hidden nodes (clients that can communicate with the Access Point but are out of range of each other) in very large cells.

When RTS/CTS occurs, the sending radio first transmits a Request to Send (RTS) packet to confirm that the medium is clear. When the receiving radio successfully receives the RTS packet, it transmits back a Clear to Send (CTS) packet to the sending radio. When the sending radio receives the CTS packet, it sends the data packet to the receiving radio. The RTS and CTS packets contain a reservation time to notify other radios (including hidden nodes) that the medium is in use for a specified period. This helps to minimize collisions. While RTS/CTS adds overhead to the radio network, it is particularly useful for large packets that take longer to resend after a collision occurs.

RTS/CTS Medium Reservation is an advanced parameter and supports a range between 0 and 2347 bytes. When set to 2347 (the default setting), the RTS/CTS mechanism is disabled. When set to 0, the RTS/CTS mechanism is used for all packets. When set to a value between 0 and 2347, the Access Point uses the RTS/CTS mechanism for packets that are the specified size or greater. You should not need to enable this parameter for most networks unless you suspect that the wireless cell contains hidden nodes.

Wireless Service Status

The user can shut down (or resume) the wireless service on the wireless interface of the AP through the CLI, HTTP, or SNMP interface. When the wireless service on a wireless interface is shut down, the AP will:

- Stop the AP services to wireless clients connected on that wireless interface by disassociating them
- Disable the associated BSS port on that interface
- Disable the transmission and reception of frames on that interface
- Indicate the wireless service shutdown status of the wireless interface through LED and traps
• Enable Ethernet interface so that it can receive a wireless service resume command through CLI/HTTP/SNMP interface

➢ NOTE

WSS disables only BSS ports; WDS ports are still operational.

➢ NOTE

The wireless service cannot be shutdown on an interface where Rogue Scan is enabled.

In shutdown state, the AP will not transmit and receive frames from the wireless interface and will stop transmitting periodic beacons. Moreover, none of the frames received from the Ethernet interface will be forwarded to that wireless interface.

Wireless service on a wireless interface of the AP can be resumed through CLI/HTTP/SNMP management interface. When wireless service on a wireless interface is resumed, the AP will:

• Enable the transmission and reception of frames on that wireless interface
• Enable the associated BSS port on that interface
• Start the AP services to wireless clients
• Indicate the wireless service resume status of the wireless interface through LED and traps

After wireless service resumes, the AP resumes beaconing, transmitting and receiving frames to/from the wireless interface and bridging the frames between the Ethernet and the wireless interface.

Traps Generated During Wireless Service Shutdown (and Resume)

The following traps are generated during wireless service shutdown and resume, and are also sent to any configured Syslog server.

When the wireless service is shutdown on a wireless interface, the AP generates a trap called orITrapWirelessServiceShutdown.

When the wireless service is resumed on a wireless interface, the AP generates a trap called orITrapWirelessServiceResumed.

Multicast Rate

The multicast rate determines the rate at which broadcast and multicast packets are transmitted by the Access Point to the wireless network. Stations that are closer to the Access Point can receive multicast packets at a faster data rate than stations that are farther away from the AP. Therefore, you should set the Multicast Rate based on the size of the Access Point’s cell.

➢ NOTE

Multicast Rate cannot be set by the HTTP interface, but must be set via CLI.

Cells of different sizes have different capacities and, therefore, suit different applications. For instance, a typical office has many stations that require high bandwidth for complex, high-speed data processing. In contrast, a typical warehouse has a few forklifts requiring low bandwidth for simple transactions.

Cell capacities are compared in the following table, which shows that small cells suit most offices and large cells suit most warehouses:

<table>
<thead>
<tr>
<th>Small Cell</th>
<th>Large Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physically accommodates few stations</td>
<td>Physically accommodates many stations</td>
</tr>
<tr>
<td>High cell bandwidth per station</td>
<td>Lower cell bandwidth per station</td>
</tr>
<tr>
<td>High transmit rate</td>
<td>Lower transmit rate</td>
</tr>
</tbody>
</table>

Coverage

The number of Access Points in a set area determines the network coverage for that area. A large number of Access Points covering a small area is a high-density cell. A few Access Points, or even a single unit, covering the same small area would result in a low-density cell, even though in both cases the actual area did not change — only the number of Access Points covering the area changed.
In a typical office, a high density area consists of a number of Access Points installed every 20 feet and each Access Point generates a small radio cell with a diameter of about 10 feet. In contrast, a typical warehouse might have a low density area consisting of large cells (with a diameter of about 90 feet) and Access Points installed every 200 feet.

Figure 4-11 1 Mbits/s and 11 Mbits/s Multicast Rates
Wireless Distribution System (WDS)

A Wireless Distribution System (WDS) creates a link between two 802.11a, 802.11b, or 802.11b/g APs over their radio interfaces. This link relays traffic from one AP that does not have Ethernet connectivity to a second AP that has Ethernet connectivity. WDS allows you to configure up to six (6) point-to-point links between Access Points.

In the WDS example below, AP 1 and AP 2 communicate over a WDS link (represented by the blue line). This link provides Client 1 with access to network resources even though AP 1 is not directly connected to the Ethernet network. Packets destined for or sent by the client are relayed between the Access Points over the WDS link.

![WDS Example](image)

Bridging WDS

Each WDS link is mapped to a logical WDS port on the AP. WDS ports behave like Ethernet ports rather than like standard wireless interfaces: on a BSS port, an Access Point learns by association and from frames; on a WDS or Ethernet port, an Access Point learns from frames only. When setting up a WDS, keep in mind the following:

- There are separate security settings for clients and WDS links. The same WDS link security mode must be configured (currently we only support none or WEP) on each Access Point in the WDS, and the same WEP key must be configured.
- The WDS link shares the communication bandwidth with the clients. Therefore, while the maximum data rate for the Access Point's cell is 54 Mbits/s (802.11a, 802.11g only, or 802.11b/g modes) or 11 Mbits/s (802.11b only mode), client throughput will decrease when the WDS link is active.
- If there is no partner MAC address configured in the WDS table, the WDS port remains disabled.
- Each WDS port on a single AP should have a unique partner MAC address. Do not enter the same MAC address twice in an AP’s WDS port list.
- Each Access Point that is a member of the WDS must have the same channel setting to communicate with each other.
- If your network does not support spanning tree, be careful to avoid creating network loops between APs. For example, creating a WDS link between two Access Points connected to the same Ethernet network will create a network loop (if spanning tree is disabled). For more information, refer to the Spanning Tree section.

WDS Setup Procedure

NOTE

You must disable Auto Channel Select to create a WDS. Each Access Point that is a member of the WDS must have the same Channel setting to communicate with each other.
Performing Advanced Configuration
SYSTIMAX® AirSPEED™ AP541 User Guide

To setup a wireless backbone, follow the steps below for each AP that you wish to include in the Wireless Distribution System.

1. Confirm that Auto Channel Select is disabled.
2. Write down the MAC Address of the radio that you wish to include in the Wireless Distribution System.
3. Click Configure > Interfaces > Wireless.
4. Scroll down to the Wireless Distribution System heading.

![WDS Configuration Table]

Figure 4-13 WDS Configuration

5. Click the Edit button to update the Wireless Distribution System (WDS) Table.

![WDS Slot A Table Configuration- Add Entries]

Figure 4-14 Adding WDS Links

6. Select whether to use encryption in the WDS by checking the Enable WDS Security Mode checkbox.
7. If you enabled WDS Security Mode, enter the Encryption Key 0 used for encryption between the WDS links.
8. Enter the MAC Address that you wrote down in Step 2 in one of the **Partner MAC Address** field of the Wireless Distribution Setup window.

9. Set the **Status** of the device to **Enable**.

10. Click **OK**.

11. Reboot the AP.

Ethernet

From this tab, you may select the desired speed and transmission mode from the drop-down menu. Half-duplex means that only one side of the link can transmit at a time and full-duplex allows both sides of the link to transmit. When set to auto-duplex, the AP negotiates with its switch or hub to automatically select the highest throughput option supported by both sides.

![Ethernet Configuration Diagram](image)

Figure 4-15 Ethernet Configuration

For best results, SYSTIMAX recommends that you configure the Ethernet setting to match the speed and transmission mode of the device the Access Point is connected to (such as a hub or switch). If in doubt, leave this setting at its default, **auto-speed-auto-duplex**. Choose between:

- 10 Mbit/s - half duplex or full duplex
- 100 Mbit/s - half duplex or full duplex
- Auto speed - auto duplex
Management
The Management tab contains the following sub-tabs.

– Passwords
– IP Access Table
– Services
– Automatic Configuration (AutoConfig)
– Hardware Configuration Reset (CHRD)

Passwords
You can configure the following passwords:

• **SNMP Read Community Password:** The password for read access to the AP using SNMP. Enter a password in both the Password field and the Confirm field. Passwords must be between 6 and 32 characters. The default password is “public”.

• **SNMP Read/Write Community Password:** The password for read and write access to the AP using SNMP. Enter a password in both the Password field and the Confirm field. Passwords must be between 6 and 32 characters. The default password is “public”.

• **SNMPv3 Authentication Password:** The password used for authentication when SNMPv3 (secure management) is enabled. Enter a password in both the Password field and the Confirm field. This password must be between 6 and 32 characters, but a length of at least 8 characters is recommended. The default password is “public”. Note that Secure Management (Services tab) must be enabled to configure SNMPv3. The default SNMPv3 username is **administrator**, with SHA authentication, and DES privacy protocol.

• **SNMPv3 Privacy Password:** The password used for encrypting SNMP messages when SNMPv3 (secure management) is enabled. Enter a password in both the Password field and the Confirm field. This password must be between 6 and 32 characters, but a length of at least 8 characters is recommended. The default password is “public”. Note that Secure Management (Services tab) must be enabled to configure SNMPv3.

• **Telnet (CLI) Password:** The password for the CLI interface (via serial or Telnet). Enter a password in both the Password field and the Confirm field. Passwords must be between 6 and 32 characters. The default password is “public”.

• **HTTP (Web) Password:** The password for the Web browser HTTP interface. Enter a password in both the Password field and the Confirm field. Passwords must be between 6 and 32 characters. The default password is “public”.

NOTE
For security purposes SYSTIMAX recommends changing ALL PASSWORDS from the default “public” immediately, to restrict access to your network devices to authorized personnel. If you lose or forget your password settings, you can always perform the Reset to Factory Default Procedure.

IP Access Table
The Management IP Access Table limits in-band management access to the IP addresses or range of IP addresses specified in the table. This feature applies to all management services (SNMP, HTTP, and CLI) except for CLI management over the serial port. To configure this table, click **Add** and set the following parameters:

• **IP Address:** Enter the IP Address for the management station.

• **IP Mask:** Enter a mask that will act as a filter to limit access to a range of IP Addresses based on the IP Address you already entered.
 – The IP mask 255.255.255.255 would authorize the single station defined by the IP Address to configure the Access Point. The AP would ignore commands from any other IP address. In contrast, the IP mask 255.255.255.0 would allow any device that shares the first three octets of the IP address to configure the AP. For example, if you enter an IP address of 10.20.30.1 with a 255.255.255.0 subnet mask, any IP address between 10.20.30.1 and 10.20.30.254 will have access to the AP's management interfaces.

• **Comment:** Enter an optional comment, such as the station name.

To edit or delete an entry, click **Edit**. Edit the information, or select **Enable**, **Disable**, or **Delete** from the **Status** pull-down menu.
Services

You can configure the following management services:

Secure Management

Secure Management allows the use of encrypted and authenticated communication protocols such as SNMPv3, Secure Socket Layer (SSL), and Secure Shell (SSH) to manage the Access Point.

• **Secure Management Status**: Enables the further configuration of HTTPS Access, SNMPv3, and Secure Shell (SSH). After enabling Secure Management, you can choose to configure HTTPS (SSL) and Secure Shell access on the Services tab, and to configure SNMPv3 passwords on the Passwords tab.

SNMP Settings

• **SNMP Interface Bitmask**: Configure the interface or interfaces (Ethernet, Wireless, All Interfaces) from which you will manage the AP via SNMP. You can also select Disable to prevent a user from accessing the AP via SNMP.

HTTP Access

• **HTTP Interface Bitmap**: Configure the interface or interfaces (Ethernet, Wireless, All Interfaces) from which you will manage the AP via the Web interface. For example, to allow Web configuration via the Ethernet network only, set HTTP Interface Bitmap to Ethernet. You can also select Disabled to prevent a user from accessing the AP from the Web interface.

• **HTTP Port**: Configure the HTTP port from which you will manage the AP via the Web interface. By default, the HTTP port is 80. You must reboot the Access Point if you change the HTTP Port.

• **HTTP Wizard Status**: The Setup Wizard appears automatically the first time you access the HTTP interface. If you exited out of the Setup Wizard and want to relaunch it, enable this option, click OK, and then close your browser or reboot the AP. The Setup Wizard will appear the next time you access the HTTP interface.

HTTPS Access (Secure Socket Layer)

• **HTTPS (Secure Web Status)**: The user can access the AP in a secure fashion using Secure Socket Layer (SSL) over port 443. The AP comes pre-installed with all required SSL files: default certificate and private key installed. Select Enable or Disable from the drop down menu to enable/disable SSL on the AP.

• **SSL Certificate Passphrase**: After enabling SSL, the only configurable parameter is the SSL passphrase. Enter the SSL Passphrase in the SSL Certificate Passphrase field.

The AP supports SSLv3 with a 128-bit encryption certificate maintained by the AP for secure communications between the AP and the HTTP client. All communications are encrypted using the server and the client-side certificate.

The user must change the SSL passphrase when uploading a new certificate/private key pair, which will have a corresponding passphrase.

NOTE

SSL requires Internet Explorer version 6, 128 bit encryption, Service Pack 1, and patch Q323308.

NOTE

You need to reboot the AP after enabling or disabling SSL for the changes to take effect.

Accessing the AP through the HTTPS interface

The user should use a SSL intelligent browser to access the AP through the HTTPS interface. After configuring SSL, access the AP using https:// followed by the AP’s management IP address.
Performing Advanced Configuration

SYSTIMAX® AirSPEED™ AP541 User Guide

Figure 4-16 Management Services Configuration Screen
Telnet Configuration Settings

- **Telnet Interface Bitmask**: Select the interface (Ethernet, Wireless, All Interfaces) from which you will manage the AP via telnet. This parameter can also be set to Disable to prevent telnet management.
- **Telnet Port Number**: The default port number for Telnet applications is 23. However, you can use this field if you want to change the Telnet port for security reasons (but your Telnet application also must support the new port number you select). You must reboot the Access Point if you change the Telnet Port.
- **Telnet Login Idle Timeout (seconds)**: Enter the number of seconds the system will wait for a login attempt. The AP terminates the session when it times out. The range is 30 to 300 seconds; the default is 60 seconds.
- **Telnet Session Idle Timeout (seconds)**: Enter the number of seconds the system will wait during a session while there is no activity. The AP will terminate the session on timeout. The range is 60 to 36000 seconds; the default is 900 seconds.

Secure Shell (SSH) Settings

The AP supports SSH version 2, for secure remote CLI (Telnet) sessions. SSH provides strong authentication and encryption of session data.

The SSH server (AP) has **host keys** - a pair of asymmetric keys - a **private key** that resides on the AP and a **public key** that is distributed to clients that need to connect to the AP. As the client has knowledge of the server host keys, the client can verify that it is communicating with the correct SSH server. The client authentication is performed as follows:

- Using a username/password pair if RADIUS Based Management is enabled; otherwise using a password to authenticate the user over a secure channel created using SSH.

SSH Session Setup

An SSH session is setup through the following process:

- The SSH server public key is transferred to the client using out-of-band or in-band mechanisms.
- The SSH client verifies the correctness of the server using the server’s public key.
- The user/client authenticates to the server.
- An encrypted data session starts. The maximum number of SSH sessions is limited to two. If there is no activity for a specified amount of time (the Telnet Session Timeout parameter), the AP will timeout the connection.

SSH Clients

The following SSH clients have been verified to interoperate with the AP’s server. The following table lists the clients, version number, and the website of the client:

<table>
<thead>
<tr>
<th>Clients</th>
<th>Version</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenSSH</td>
<td>V3.4-2</td>
<td>http://www.openssh.com</td>
</tr>
<tr>
<td>Putty</td>
<td>Rel 0.53b</td>
<td>http://www.chiark.greenend.org.uk</td>
</tr>
<tr>
<td>Zoc</td>
<td>5.00</td>
<td>http://www.emtec.com</td>
</tr>
<tr>
<td>Axessh</td>
<td>V2.5</td>
<td>http://www.labf.com</td>
</tr>
</tbody>
</table>

For key generation, OpenSSH client has been verified.

Configuring SSH

Perform the following procedure to enable SSH and set the SSH host key:

1. Select Enable from the **SSH (Secure Shell) Status** drop-down box.

 NOTE

 When Secure Management is enabled on the AP, SSH will be enabled by default and cannot be disabled.

2. Select the **SSH Host Key Status** from the drop-down menu.

Host keys must either be generated externally and uploaded to the AP (see Uploading Externally Generated Host Keys), generated manually, or auto-generated at the time of SSH initialization if SSH is enabled and no host keys are present. There is no key present in an AP that is in a factory default state.
To manually generate or delete host keys on the AP:

• Select **Create** to generate a new pair of host keys.
• Select **Delete** to remove the host keys from the AP. If no host keys are present, the AP will not allow connections using SSH. When host keys are created or deleted, the AP updates the fingerprint information displayed on the **Management > Services** page.

WARNING

Ssh Host key creation may take 3 to 4 minutes during which time the AP may not respond.

Uploading Externally Generated Host Keys

Perform the following procedure to upload externally generated host keys to the AP. You must upload both the SSH public key and SSH private key for SSH to work.

1. Verify that the host keys have been externally generated. The OpenSSH client has been verified to interoperate with AP’s SSH server.
2. Click **Commands > Update AP > via HTTP** (or via TFTP).

![Figure 4-17 Uploading an Externally Generated SSH Public Key and SSH Private Key](image)

3. Select “SSH Public Key” from the File Type drop-down menu.
4. Click **Browse**, select the SSH Public Key file on your local machine.
5. Click **Open**.
6. To initiate the file transfer, click the **Update AP** button.
7. Select “SSH Private Key” from the **File Type** drop-down menu.
8. Click **Browse**, select the SSH Private Key on your local machine.
9. Click **Open**.
10. To initiate the file transfer, click the **Update AP** button.

The fingerprint of the new SSH public key will be displayed in the **Management > Services** page.
Serial Configuration Settings

The serial port interface on the AP is enabled at all times. See Setting IP Address using Serial Port for information on how to access the CLI interface via the serial port. You can configure and view the following parameters:

- **Serial Baud Rate**: Select the serial port speed (bits per second). Choose between 2400, 4800, 9600, 19200, 38400, or 57600; the default Baud Rate is 9600.
- **Serial Flow Control**: Select either None (default) or Xon/Xoff (software controlled) data flow control.

NOTE
To avoid potential problems when communicating with the AP through the serial port, SYSTIMAX recommends that you leave the Flow Control setting at None (the default value).

- **Serial Data Bits**: This is a read-only field and displays the number of data bits used in serial communication (8 data bits by default).
- **Serial Parity**: This is a read-only field and displays the number of parity bits used in serial communication (no parity bits by default).
- **Serial Stop Bits**: This is a read-only field that displays the number of stop bits used in serial communication (1 stop bit by default).

NOTE
The serial port bit configuration is commonly referred to as **8N1**.

RADIUS Based Management Access

User management of APs can be centralized by using a RADIUS server to store user credentials. The AP cross-checks credentials using RADIUS protocol and the RADIUS server accepts or rejects the user. HTTP/HTTPS and Telnet/SSH users can be managed with RADIUS. Serial CLI and SNMP cannot be managed by RADIUS. Two types of users can be supported using centralized RADIUS management:

- **Super User**: The super user has access to all functionality of a management interface. A super user is configured in the RADIUS server by setting the filter ID attribute (returned in the RADIUS Accept packet) for the user to a value of “super user” (not case sensitive). A user is considered a super user if the value of the `filter-id` attribute returned in the RADIUS Accept packet for the user is “super user” (not case sensitive).
- **Limited User**: A limited user has access to only a limited set of functionality on a management interface. All users who are not super users are considered limited users. However, a limited user is configured in the RADIUS server by setting the `filter-id` attribute (returned in the RADIUS Accept packet) to “limited user” (not case sensitive). Limited users do not have access to the following configuration capabilities:
 - Update/retrieve files to and from APs
 - Reset the AP to factory defaults
 - Reboot the AP
 - Change management properties related to RADIUS, management modes, and management passwords.

When RADIUS Based Management is enabled, a **local user** can be configured to provide Telnet, SSH, and HTTP(S) access to the AP when RADIUS servers fail. The local user has super user capabilities. When secure management is enabled, the local user can only login using secure means (i.e., SSH or SSL). When the local user option is disabled the only access to the AP when RADIUS servers are down will be through serial CLI or SNMP.

The Radius Based Management Access parameters allows you to enable HTTP or Telnet Radius Management Access, to configure a RADIUS Profile for management access control, and to enable or disable local user access, and configure the local user password. You can configure and view the following parameters:

- **HTTP RADIUS Access Control Status**: Enable RADIUS management of HTTP/HTTPS users.
- **Telnet RADIUS Access Control Status**: Enable RADIUS management of Telnet/SSH users.
- **RADIUS Profile for Management Access Control**: Specifies the RADIUS Profile to be used for RADIUS Based Management Access.
- **Local User Status**: Enables or disables the local user when RADIUS Based Management is enabled. The default local user ID is root.
- **Local User Password** and **Confirm Password**: The default local user password is public. “Root” cannot be configured as a valid user for Radius based management access when local user access is enabled.
Automatic Configuration (AutoConfig)

The Automatic Configuration feature allows an AP to be automatically configured by downloading a specific configuration file from a TFTP server during the boot up process.

Automatic Configuration is disabled by default. The configuration process for Automatic Configuration varies depending on whether the AP is configured for dynamic or static IP.

When an AP is configured for dynamic IP, the Configuration filename and the TFTP server IP address are contained in the DHCP response when the AP gets its IP address dynamically from the DHCP server. When configured for static IP, these parameters are instead configured in the AP interface.

After setting up automatic configuration you must reboot the AP. When the AP reboots it receives the new configuration information and must reboot one additional time. If Syslog is configured, a Syslog message will appear indicating the success or failure of the Automatic Configuration.

Auto Configuration and the CLI Batch File

The Auto Configuration feature allows download of the LTV (Length, Type, Value) format configuration file or the CLI Batch file. The LTV file contains parameters used by the AP; the CLI Batch file contains CLI executable commands used to set AP parameters. The AP detects whether the uploaded file is LTV format or a CLI Batch file. If the AP detects an LTV file, it stores the file in the AP’s flash memory. If the AP detects a CLI Batch file (a file with an extension of .cli), the AP executes the commands contained in the file immediately.

The AP will reboot after executing the CLI Batch file. Auto Configuration will not result in repeated reboots if the CLI Batch file contains rebootable parameters.

For more information, refer to CLI Batch File.

Configuring Automatic Configuration for Static IP

Perform the following procedure to enable and set up Automatic Configuration when you have a static IP address for the TFTP server.

1. Click Configure > Management > AutoConfig.
 The Automatic Configuration Screen appears.
2. Check Enable Auto Configuration.
3. Enter the Configuration Filename.
4. Enter the IP address of the TFTP server in the TFTP Server Address field.

 NOTE
 The default filename is “config”. The default TFTP IP address is “169.254.128.133” for the AirSPEED AP541.

5. Click OK to save the changes.
6. Reboot the AP. When the AP reboots it receives the new configuration information and must reboot one additional time. If a Syslog server was configured, the following messages can be observed on the Syslog server:
 • AutoConfig for Static IP
 • TFTP server address and configuration filename
 • AutoConfig Successful
Configuring Automatic Configuration for Dynamic IP

Perform the following procedure to enable and set up Automatic Configuration when you have a dynamic IP address for the TFTP server via DHCP.

The Configuration filename and the TFTP server IP address are contained in the DHCP response when the AP gets its IP address dynamically from the DHCP server. A Syslog server address is also contained in the DHCP response, allowing the AP to send Auto Configuration success and failure messages to a Syslog server.

NOTE

The configuration filename and TFTP server IP address are configured only when the AP is configured for Static IP. If the AP is configured for Dynamic IP these parameters are not used and obtained from DHCP.

1. Click **Configure > Management > AutoConfig**.
2. Check **Enable Auto Configuration**.

When the AP is configured with Dynamic IP, the DHCP server should be configured with the TFTP Server IP address ("Boot Server Host Name", option 66) and Configuration file ("Bootfile name", option 67) as follows (note that this example uses a Windows 2000 server):

3. **Select DHCP Server > DHCP Option > Scope**.

The **DHCP Options: Scope** screen appears.

Figure 4-18 Automatic Configuration Screen
4. Add the **Boot Server Host Name** and **Boot Filename** parameters to the Active Options list.

5. Set the value of the **Boot Server Host Name** parameter to the host name or IP Address of the TFTP server. For example: 11.0.0.7.

6. Set the value of the **Bootfile Name** parameter to the Configuration filename (for example: AP-Config).

7. If using Syslog, set the Log server IP address (option 7, Log Servers).

8. Reboot the AP. When the AP reboots it receives the new configuration information and must reboot one additional time. If a Syslog server was configured, the following messages can be observed on the Syslog server:
 - AutoConfig for Dynamic IP
 - TFTP server address and configuration filename
 - AutoConfig Successful
Hardware Configuration Reset (CHRD)

Hardware Configuration Reset Status is a parameter that defines the hardware configuration reset behavior of the AP (i.e., what effect pressing the reload button has on an AP operating in normal operating mode).

If a user loses or forgets the AP’s HTTP/Telnet/SNMP password, the reset button on the AP provides a way to reset the AP to default configuration values to gain access to the AP. However, in AP deployments where physical access to the AP is not protected, an unauthorized person could reset the AP to factory defaults and thus gain control of the AP. The user can disable the hardware configuration reset functionality to prevent unauthorized access.

The hardware configuration reset feature operates as follows:

• When hardware configuration reset is enabled, the user can press the hardware reload button for 10 seconds when the AP is in normal operational mode in order to delete the AP configuration.

• When hardware configuration reset is disabled, pressing the reload button when the AP is in normal operational mode does not have any effect on the AP.

• The hardware configuration reset parameter does not have any effect on the functionality of the reload button to delete the AP image during AP boot loaded execution.

• The default hardware configuration reset status is enabled. When disabling hardware configuration reset, the user is recommended to configure a configuration reset password. A configuration reset option appears on the serial port during boot up, before the AP reads its configuration and initializes.

• Whenever the AP is reset to factory default configuration, hardware configuration reset status is enabled and the configuration reset password is set to the default, “public”.

• If secure mode is enabled in the AP, only secure (SSL, SNMPv3, SSH) users can modify the values of the Hardware Configuration Reset Status and the configuration reset password.

Configuration Reset via Serial Port During Bootup

If hardware configuration reset is disabled, the user gets prompted by a configuration reset option to reset the AP to factory defaults during boot up from the serial interface. By pressing a key sequence (ctrl-R), the user gets prompted to enter a configuration reset password before the configuration is reset.

NOTE

It is important to safely store the configuration reset password. If a user forgets the configuration reset password, the user will be unable to reset the AP to factory default configuration if the AP becomes inaccessible and the hardware configuration reset functionality is disabled.
Configuring Hardware Configuration Reset

Perform the following procedure to configure Hardware Configuration Reset and to set the Configuration Reset Password.

1. Click **Configure > Management > CHRD.**

![Hardware Configuration Reset](image)

2. Check (enable) or uncheck (disable) the **Enable Hardware Configuration Reset** checkbox.

3. Change the default Configuration Reset Password in the "Configuration Reset Password" and "Confirm" fields.

NOTE

It is important to safely store the configuration reset password. If a user forgets the configuration reset password, the user will be unable to reset the AP to factory default configuration if the AP becomes inaccessible and the hardware configuration reset functionality is disabled.

Procedure to Reset Configuration via the Serial Interface

1. During boot up, observe the message output on the serial interface.

 The AP prompts the user with the message: “Press ctrl-R in 3 seconds to choose configuration reset option.”

2. Enter ctrl-R within 3 seconds after being prompted.

 The AP prompts the user with “Press ctrl-Z to continue with normal boot up or enter password to reset configuration.” If the user enters ctrl-Z, the AP continues to boot with the stored configuration.

3. Enter the configuration reset password. The default configuration reset password is “public”.

 When the correct configuration reset password is entered, the AP gets reset to factory defaults and displays the message “AP has been reset to Factory Default Settings.” The AP continues to boot up. If an incorrect configuration reset password is entered, the AP shows an error message and reprompts the user. If the incorrect password is entered three times in a row, the AP proceeds to boot up.
Filtering

The Access Point’s Packet Filtering features help control the amount of traffic exchanged between the wired and wireless networks. The Filtering tab contains the following sub-tabs:

- Ethernet Protocol
- Static MAC
- Advanced
- TCP/UDP Port

Ethernet Protocol

The Ethernet Protocol Filter blocks or forwards packets based on the Ethernet protocols they support.

Follow these steps to configure the Ethernet Protocol Filter:

1. Select the interface or interfaces that will implement the filter from the Ethernet Protocol Filtering drop-down menu.
 - Ethernet: Packets are examined at the Ethernet interface
 - Wireless: Packets are examined at the Wireless interface
 - All Interfaces: Packets are examined at both interfaces
 - Disabled: The filter is not used

2. Select the Filter Operation Type.
 - If set to Passthru, only the enabled Ethernet Protocols listed in the Filter Table will pass through the bridge.
 - If set to Block, the bridge will block enabled Ethernet Protocols listed in the Filter Table.

3. Configure the Ethernet Protocol Filter Table. This table is pre-populated with existing Ethernet Protocol Filters, however, you may enter additional filters by specifying the appropriate parameters.
 - To add an entry, click Add, and then specify the Protocol Number and a Protocol Name.
 - Protocol Number: Enter the protocol number. See http://www.iana.org/assignments/ethernet-numbers for a list of protocol numbers.
 - Protocol Name: Enter related information, typically the protocol name.
 - To edit or delete an entry, click Edit and change the information, or select Enable, Disable, or Delete from the Status drop-down menu.
 - An entry’s status must be enabled in order for the protocol to be subject to the filter.
Static MAC

The Static MAC Address filter optimizes the performance of a wireless (and wired) network. When this feature is properly configured, the AP can block traffic between wired devices and wireless devices based on MAC address.

For example, you can set up a Static MAC filter to prevent wireless clients from communicating with a specific server on the Ethernet network. You can also use this filter to block unnecessary multicast packets from being forwarded to the wireless network.

NOTE

The Static MAC Filter is an advanced feature. You may find it easier to control wireless traffic via other filtering options, such as Ethernet Protocol Filtering.

Each static MAC entry contains the following fields:

- **Wired MAC Address**
- **Wired Mask**
- **Wireless MAC Address**
- **Wireless Mask**
- **Comment:** This field is optional.

Each MAC Address or Mask is comprised of 12 hexadecimal digits (0-9, A-F) that correspond to a 48-bit identifier. (Each hexadecimal digit represents 4 bits (0 or 1).)

Taken together, a MAC Address/Mask pair specifies an address or a range of MAC addresses that the AP will look for when examining packets. The AP uses Boolean logic to perform an "AND" operation between the MAC Address and the Mask at the bit level. However, for most users, you do not need to think in terms of bits. It should be sufficient to create a filter using only the hexadecimal digits 0 and F in the Mask (where 0 is any value and F is the value specified in the MAC address). A Mask of 00:00:00:00:00:00 corresponds to all MAC addresses, and a Mask of FF:FF:FF:FF:FF:FF applies only to the specified MAC Address.

For example, if the MAC Address is 00:20:A6:12:54:C3 and the Mask is FF:FF:FF:00:00:00, the AP will examine the source and destination addresses of each packet looking for any MAC address starting with 00:20:A6. If the Mask is FF:FF:FF:FF:FF:FF, the AP will only look for the specific MAC address (in this case, 00:20:A6:12:54:C3).

When creating a filter, you can configure the Wired parameters only, the Wireless parameters only, or both sets of parameters. Which parameters to configure depends upon the traffic that you want block:

- To prevent all traffic from a specific wired MAC address from being forwarded to the wireless network, configure only the Wired MAC Address and Wired Mask (leave the Wireless MAC Address and Wireless Mask set to all zeros).
- To prevent all traffic from a specific wireless MAC address from being forwarded to the wired network, configure only the Wireless MAC address and Wireless Mask (leave the Wired MAC Address and Wired Mask set to all zeros).
- To block traffic between a specific wired MAC address and a specific wireless MAC address, configure all four parameters.

To create an entry, click **Add** and enter the appropriate MAC addresses and Masks to setup a filter. The entry is enabled automatically when saved. To edit an entry, click **Edit**. To disable or remove an entry, click **Edit** and change the **Status** field from **Enable** to **Disable** or **Delete**.
Station MAC Filter Examples

Consider a network that contains a wired server and three wireless clients. The MAC address for each unit is as follows:

- Wired Server: 00:40:F4:1C:DB:6A
- Wireless Client 1: 00:02:2D:51:94:E4
- Wireless Client 2: 00:02:2D:51:32:12
- Wireless Client 3: 00:20:A6:12:4E:38

Prevent Two Specific Devices from Communicating

Configure the following settings to prevent the Wired Server and Wireless Client 1 from communicating:

- Wired MAC Address: 00:40:F4:1C:DB:6A
- Wireless MAC Address: 00:02:2D:51:94:E4

Result: Traffic between the Wired Server and Wireless Client 1 is blocked. Wireless Clients 2 and 3 can still communicate with the Wired Server.

Prevent Multiple Wireless Devices From Communicating With a Single Wired Device

Configure the following settings to prevent Wireless Clients 1 and 2 from communicating with the Wired Server:

- Wired MAC Address: 00:40:F4:1C:DB:6A
- Wireless MAC Address: 00:02:2D:51:94:E4

Result: When a logical “AND” is performed on the Wireless MAC Address and Wireless Mask, the result corresponds to any MAC address beginning with the 00:20:2D prefix. Since Wireless Client 1 and Wireless Client 2 share the same prefix (00:02:2D), traffic between the Wired Server and Wireless Clients 1 and 2 is blocked. Wireless Client 3 can still communicate with the Wired Server since it has a different prefix (00:20:A6).
Prevent All Wireless Devices From Communicating With a Single Wired Device

Configure the following settings to prevent all three Wireless Clients from communicating with Wired Server 1:

- **Wired MAC Address:** 00:40:F4:1C:DB:6A
- **Wired Mask:** FF:FF:FF:FF:FF:FF
- **Wireless MAC Address:** 00:00:00:00:00:00
- **Wireless Mask:** 00:00:00:00:00:00

Result: The Access Point blocks all traffic between Wired Server 1 and all wireless clients.

Prevent Wireless Device from Communicating with Wired Network

Configure the following settings to prevent Wireless Client 3 from communicating with any device on the Ethernet:

- **Wired MAC Address:** 00:00:00:00:00:00
- **Wired Mask:** 00:00:00:00:00:00
- **Wireless MAC Address:** 00:20:A6:12:4E:38
- **Wireless Mask:** FF:FF:FF:FF:FF:FF

Result: The Access Point blocks all traffic between Wireless Client 3 and the Ethernet network.

Prevent Messages Destined for a Specific Multicast Group from Being Forwarded to the Wireless LAN

If there are devices on your Ethernet network that use multicast packets to communicate and these packets are not required by your wireless clients, you can set up a Static MAC filter to preserve wireless bandwidth. For example, if routers on your network use a specific multicast address (such as 01:00:5E:00:32:4B) to exchange information, you can set up a filter to prevent these multicast packets from being forwarded to the wireless network. Configure the following settings to prevent the AP from forwarding packets for a specific multicast group to the wireless LAN:

- **Wired MAC Address:** 01:00:5E:00:32:4B
- **Wired Mask:** FF:FF:FF:FF:FF:FF
- **Wireless MAC Address:** 00:00:00:00:00:00
- **Wireless Mask:** 00:00:00:00:00:00

Result: The Access Point does not forward any packets that have a destination address of 01:00:5E:00:32:4B to the wireless network.
Advanced

You can configure the following advanced filtering options:

- **Enable Proxy ARP**: Place a check mark in the box provided to allow the Access Point to respond to Address Resolution Protocol (ARP) requests for wireless clients. When enabled, the AP answers ARP requests for wireless stations without actually forwarding them to the wireless network. If disabled, the Access Point will bridge ARP requests for wireless clients to the wireless LAN.

- **Enable IP/ARP Filtering**: Place a check mark in the box provided to allow IP/ARP filtering based on the IP/ARP Filtering Address and IP Mask. Leave the box unchecked to prevent filtering. If enabled, you should also configure the IP/ARP Filtering Address and IP/ARP IP Mask.
 - **IP/ARP Filtering Address**: Enter the Network filtering IP Address.
 - **IP/ARP IP Mask**: Enter the Network Mask IP Address.

The following protocols are listed in the Advanced Filter Table:

- Deny IPX RIP
- Deny IPX SAP
- Deny IPX LSP
- Deny IP Broadcasts
- Deny IP Multicasts

The AP can filter these protocols in the wireless-to-Ethernet direction, the Ethernet-to-wireless direction, or in both directions. Click **Edit** and use the **Status** field to Enable or Disable the filter.
TCP/UDP Port

Port-based filtering enables you to control wireless user access to network services by selectively blocking TCP/UDP protocols through the AP. A user specifies a Protocol Name, Port Number, Port Type (TCP, UDP, or TCP/UDP), and filtering interfaces (Wireless only, Ethernet only, all interfaces, or no interfaces) in order to block access to services, such as Telnet and FTP, and traffic, such as NETBIOS and HTTP.

For example, an AP with the following configuration would discard frames received on its Ethernet interface with a UDP destination port number of 137, effectively blocking NETBIOS Name Service packets.

<table>
<thead>
<tr>
<th>Protocol Type (TCP/UDP)</th>
<th>Destination Port Number</th>
<th>Protocol Name</th>
<th>Interface</th>
<th>Status (Enable/Disable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP</td>
<td>137</td>
<td>NETBIOS Name Service</td>
<td>Ethernet</td>
<td>Enable</td>
</tr>
</tbody>
</table>

Adding TCP/UDP Port Filters

1. Place a check mark in the box labeled **Enable TCP/UDP Port Filtering**.
2. Click **Add** under the **TCP/UDP Port Filter Table** heading.
3. In the **TCP/UDP Port Filter Table**, enter the Protocol Names to filter.
4. Set the destination Port Number (a value between 1 and 65535) to filter. See the IANA Web site at http://www.iana.org/assignments/port-numbers for a list of assigned port numbers and their descriptions.
5. Set the Port Type for the protocol: **TCP**, **UDP**, or both (**TCP/UDP**).
6. Set the **Interface** to filter:
 - Only Ethernet
 - Only Wireless
 - All interfaces
7. Click **OK**.

Editing TCP/UDP Port Filters

1. Click **Edit** under the **TCP/UDP Port Filter Table** heading.
2. Make any changes to the Protocol Name or Port Number for a specific entry, if necessary.
3. In the row that defines the port, set the **Status** to **Enable**, **Disable**, or **Delete**, as appropriate.
4. Select **OK**.
Alarms

This tab has four sub-tabs:
- Groups
- Alarm Host Table
- Syslog
- Rogue Scan

Groups

There are seven alarm groups that can be enabled or disabled via the Web interface. Place a check mark in the box provided to enable a specific group. Remove the check mark from the box to disable the alarms. Alarm Severity Levels vary.

Severity Levels

There are three severity levels for system alarms:
- Critical
- Major
- Informational

Critical alarms will often result in severe disruption in network activity or an automatic reboot of the AP.

Major alarms are usually activated due to a breach in the security of the system. Clients cannot be authenticated because an attempt at unauthorized access into the AP has been detected.

Informational alarms are there to provide the network administrator with some general information about the activities the AP is performing.

• Configuration Trap Group

<table>
<thead>
<tr>
<th>Trap Name</th>
<th>Description</th>
<th>Severity Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS IP Address not Configured</td>
<td>oriTrapDNSIPNotConfigured</td>
<td>Major</td>
</tr>
<tr>
<td>RADIUS Authentication not Configured</td>
<td>oriTrapRADIUSAuthenticationNotConfigured</td>
<td>Major</td>
</tr>
<tr>
<td>RADIUS Accounting not Configured</td>
<td>oriTrapRADIUSAccountingNotConfigured</td>
<td>Major</td>
</tr>
<tr>
<td>Duplicate IP Address Encountered</td>
<td>oriTrapDuplicateIPAddressEncountered</td>
<td>Major</td>
</tr>
<tr>
<td>DHCP Relay Server Table Not Configured</td>
<td>oriTrapDHCPRelayServerTableNotConfigured</td>
<td>Major</td>
</tr>
<tr>
<td>VLAN ID Invalid Configuration</td>
<td>oriTrapVLANIDInvalidConfiguration</td>
<td>Major</td>
</tr>
<tr>
<td>Auto Configuration Failure</td>
<td>oriTrapAutoConfigFailure</td>
<td>Minor</td>
</tr>
<tr>
<td>CLI Configuration Execution Failure</td>
<td>oriTrapBatchExecFailure</td>
<td>Minor</td>
</tr>
<tr>
<td>CLI Configuration Execution Start</td>
<td>oriTrapBatchFileExecStart</td>
<td>Minor</td>
</tr>
<tr>
<td>CLI Configuration Execution End</td>
<td>oriTrapBatchFileExecEnd</td>
<td>Minor</td>
</tr>
</tbody>
</table>

• Security Trap Group

<table>
<thead>
<tr>
<th>Trap Name</th>
<th>Description</th>
<th>Severity Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication Failure</td>
<td>oriTrapAuthenticationFailure</td>
<td>Major</td>
</tr>
<tr>
<td>Unauthorized Manager Detected</td>
<td>oriTrapUnauthorizedManagerDetected</td>
<td>Major</td>
</tr>
<tr>
<td>RAD Scan Complete</td>
<td>oriTrapRADScanComplete</td>
<td>Informational</td>
</tr>
<tr>
<td>RAD Scan Results</td>
<td>oriTrapRADScanResults</td>
<td>Informational</td>
</tr>
</tbody>
</table>
Trap Name Description Severity Level

<table>
<thead>
<tr>
<th>Rogue Scan Station Detected</th>
<th>orITrapRogueScanStationDetected</th>
<th>Informational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rogue Scan Cycle Complete</td>
<td>orITrapRogueScanCycleComplete</td>
<td>Informational</td>
</tr>
<tr>
<td>MIC Attack Detected</td>
<td>Supported in web interface only</td>
<td>Major</td>
</tr>
<tr>
<td>MIC Attack Report Detected</td>
<td>Supported in web interface only</td>
<td>Major</td>
</tr>
</tbody>
</table>

Wireless Interface/Card Trap Group

<table>
<thead>
<tr>
<th>Trap Name</th>
<th>Description</th>
<th>Severity Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless Card Failure</td>
<td>orITrapWLCFailure</td>
<td>Critical</td>
</tr>
<tr>
<td>Radar Interference Detected</td>
<td>orITrapWLCRadarInterferenceDetected</td>
<td>Major</td>
</tr>
</tbody>
</table>

Operational Trap Group

<table>
<thead>
<tr>
<th>Trap Name</th>
<th>Description</th>
<th>Severity Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrecoverable Software Error Detected</td>
<td>orITrapUnrecoverableSoftwareErrorDetected</td>
<td>Critical</td>
</tr>
<tr>
<td>RADIUS Server Not Responding</td>
<td>orITrapRADIUSServerNotResponding</td>
<td>Major</td>
</tr>
<tr>
<td>Module Not Initialized</td>
<td>orITrapModuleNotInitialized</td>
<td>Major</td>
</tr>
<tr>
<td>Device Rebooting</td>
<td>orITrapDeviceRebooting</td>
<td>Informational</td>
</tr>
<tr>
<td>Task Suspended</td>
<td>orITrapTaskSuspended</td>
<td>Critical</td>
</tr>
<tr>
<td>BootP Failed</td>
<td>orITrapBootPFailed</td>
<td>Major</td>
</tr>
<tr>
<td>DHCP Client Failed</td>
<td>orITrapDHCPFailed</td>
<td>Major</td>
</tr>
<tr>
<td>DNS Client Lookup Failure</td>
<td>orITrapDNSClientLookupFailure</td>
<td>Major</td>
</tr>
<tr>
<td>SSL Initialization Failure</td>
<td>orITrapSSLInitializationFailure</td>
<td>Major</td>
</tr>
<tr>
<td>Wireless Service Shutdown</td>
<td>orITrapWirelessServiceShutdown</td>
<td>Informational</td>
</tr>
<tr>
<td>Wireless Service Resumed</td>
<td>orITrapWirelessServiceResumed</td>
<td>Informational</td>
</tr>
<tr>
<td>SSH Initialization Status</td>
<td>orITrapSSHCredentialStatus</td>
<td>Major</td>
</tr>
<tr>
<td>Assigned User VLAN ID</td>
<td>orITrapVLANIDUserAssignment</td>
<td>Informational</td>
</tr>
<tr>
<td>DHCP Lease Renewal</td>
<td>orITrapDHCPLeaseRenewal</td>
<td>Informational</td>
</tr>
</tbody>
</table>

Flash Memory Trap Group

<table>
<thead>
<tr>
<th>Trap Name</th>
<th>Description</th>
<th>Severity Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash Memory Empty</td>
<td>orITrapFlashMemoryEmpty</td>
<td>Informational</td>
</tr>
<tr>
<td>Flash Memory Corrupted</td>
<td>orITrapFlashMemoryCorrupted</td>
<td>Critical</td>
</tr>
<tr>
<td>Restoring Last Known Good Configuration File</td>
<td>orITrapFlashMemoryRestoringLastKnownGoodConfiguration</td>
<td>Informational</td>
</tr>
</tbody>
</table>

TFTP Trap Group
In addition, the AP supports these standard traps, which are always enabled:

RFC 1215-Trap

<table>
<thead>
<tr>
<th>Trap Name</th>
<th>Description</th>
<th>Severity Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>coldStart</td>
<td>The AP has been turned on or rebooted.</td>
<td>Informational</td>
</tr>
<tr>
<td>linkUp</td>
<td>The AP's Ethernet interface link is up (working).</td>
<td>Informational</td>
</tr>
<tr>
<td>linkDown</td>
<td>The AP's Ethernet interface link is down (not working).</td>
<td>Informational</td>
</tr>
</tbody>
</table>

Bridge MIB (RFC 1493) Alarms

<table>
<thead>
<tr>
<th>Trap Name</th>
<th>Description</th>
<th>Severity Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>newRoot</td>
<td>This trap indicates that the AP has become the new root in the Spanning Tree network.</td>
<td>Informational</td>
</tr>
<tr>
<td>topologyChange</td>
<td>This trap is sent by the AP when any of its configured ports transitions from the Learning state to the Forwarding state, or from the Forwarding state to the Blocking state. This trap is not sent if a newRoot trap is sent for the same transition.</td>
<td>Informational</td>
</tr>
</tbody>
</table>

All these alarm groups correspond to System Alarms that are displayed in the System Status Screen, including the traps that are sent by the AP to the SNMP managers specified in the Alarm Host Table.

Alarm Host Table

To add an entry and enable the AP to send SNMP trap messages to a Trap Host, click **Add**, and then specify the IP Address and Password for the Trap Host.

NOTE

Up to 10 entries are possible in the Alarm Host table.

- **IP Address**: Enter the Trap Host IP Address.
- **Password**: Enter the password in the **Password** field and the **Confirm** field.
- **Comment**: Enter an optional comment, such as the alarm (trap) host station name.
To edit or delete an entry, click **Edit**. Edit the information, or select **Enable**, **Disable**, or **Delete** from the **Status** drop-down menu.

Syslog

The Syslog messaging system enables the AP to transmit event messages to a central server for monitoring and troubleshooting. The Access Point logs “Session Start (Log-in)” and “Session Stop (Log-out)” events for each wireless client as an alternative to RADIUS accounting.

Figure 4-23 Syslog Configuration Screen

Setting Syslog Event Notifications

Syslog Events are logged according to the level of detail specified by the administrator. Logging only urgent system messages will create a far smaller, more easily read log than a log of every event the system encounters. Determine which events to log by selecting a priority defined by the following scale:

<table>
<thead>
<tr>
<th>Event</th>
<th>Priority</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOG_EMERG</td>
<td>0</td>
<td>system is unusable</td>
</tr>
<tr>
<td>LOG_ALERT</td>
<td>1</td>
<td>action must be taken immediately</td>
</tr>
<tr>
<td>LOG_CRIT</td>
<td>2</td>
<td>critical conditions</td>
</tr>
<tr>
<td>LOG_ERR</td>
<td>3</td>
<td>error conditions</td>
</tr>
<tr>
<td>LOG_WARNING</td>
<td>4</td>
<td>warning conditions</td>
</tr>
<tr>
<td>LOG_NOTICE</td>
<td>5</td>
<td>normal but significant condition</td>
</tr>
<tr>
<td>LOG_INFO</td>
<td>6</td>
<td>informational</td>
</tr>
<tr>
<td>LOG_DEBUG</td>
<td>7</td>
<td>debug-level messages</td>
</tr>
</tbody>
</table>

Configuring Syslog Event Notifications

You can configure the following Syslog settings from the HTTP interface:

- **Enable Syslog**: Place a check mark in the box provided to enable system logging.
- **Syslog Port Number**: This field is read-only and displays the port number (514) assigned for system logging.
- **Syslog Lowest Priority Logged**: The AP will send event messages to the Syslog server that correspond to the selected priority and above. For example, if set to 6, the AP will transmit event messages labeled priority 0 to 6 to the Syslog server. This parameter supports a range between 1 and 7; 6 is the default.
• **Syslog Heartbeat Status:** When Heartbeat is enabled, the AP periodically sends a message to the Syslog server to indicate that it is active.

• **Syslog Heartbeat Interval:** If Syslog Heartbeat Status is enabled this field provides the interval for the heartbeat in seconds. The default is 900 seconds.

• **Syslog Host Table:** This table specifies the IP addresses of a network servers that the AP will send Syslog messages to. Click **Add** to create a new entry. Click **Edit** to change an existing entry. Each entry contains the following field:
 – **IP Address:** Enter the IP Address for the management host.
 – **Comment:** Enter an optional comment such as the host name.
 – **Status:** The entry is enabled automatically when saved (so the Status field is only visible when editing an entry). You can also disable or delete entries by changing this field's value.

Syslog Messages

The following messages are supported in the AP:

<table>
<thead>
<tr>
<th>Message</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Configuration via DHCP</td>
<td>Informational</td>
</tr>
<tr>
<td>Auto Configuration for static IP</td>
<td>Informational</td>
</tr>
<tr>
<td>TFTP server IP/Config filename missing in DHCP response</td>
<td>Minor</td>
</tr>
<tr>
<td>AutoConfig TFTP server IP address is <IP address></td>
<td>Informational</td>
</tr>
<tr>
<td>AutoConfig filename used is <filename></td>
<td>Informational</td>
</tr>
<tr>
<td>AutoConfig TFTP download failed</td>
<td>Minor</td>
</tr>
<tr>
<td>Image Error check, invalid image</td>
<td>Minor</td>
</tr>
<tr>
<td>AP Heartbeat status</td>
<td>Minor</td>
</tr>
<tr>
<td>Client Authentication State</td>
<td>Informational</td>
</tr>
<tr>
<td>Accounting</td>
<td>Informational</td>
</tr>
<tr>
<td>RADIUS Responses</td>
<td>Informational</td>
</tr>
<tr>
<td>MIC Attack Detected</td>
<td>Major</td>
</tr>
<tr>
<td>MIC Attack Report Detected</td>
<td>Major</td>
</tr>
</tbody>
</table>
Rogue Scan

The Rogue Scan feature provides an additional security level for wireless LAN deployments. Rogue Scan uses the selected wireless interface(s) for scanning its coverage area for Access Points and clients.

A centralized Network Manager receives MAC address information from the AP on all wireless clients detected by the AP. The Network Manager then queries all wired switches to find out the inbound switch/port of these wireless clients. If the switch/port does not have a valid Access Point connected to it as per a pre-configured database, the Network Manager proceeds to block that switch/port and prevent the Rogue AP from connecting to the wired network.

![Figure 4-24 Preventing Rogue AP Attacks](image)

The figure above shows Client 1 connected to a Trusted AP and Client 2 connected to a Rogue AP. The Trusted AP scans the networks, detects Client 2, and notifies the Network Manager. The Network Manager uses SNMP/CLI to query the wired switch to find the inbound switch port of Client 2’s packets. The Network Manager verifies that this switch/router and port does not have a valid Access Point as per the administrator’s database. Thus it labels Client 2’s AP as a Rogue AP and proceeds to prevent the Rogue AP attack by blocking this switch’s port.

Multi-Band Scanning

Rogue Scan detects Rogue stations in all bands (i.e., 2.4 GHz and 5 GHz for interfaces that support 802.11a and 802.11g multi-band operation). During Rogue Scan the AP scans every channel in its configured regulatory domain; the AP scans both the 2.4 GHz and 5 GHz bands for wireless interfaces supporting 802.11a and 802.11g multi-band operation.

APs can be detected either by active scanning using 802.11 probe request frames and passively by detecting periodic beacons. Wireless clients are detected by monitoring 802.11 connection establishment messages such as association/authentication messages or data traffic to or from the wireless clients.

There are two scanning modes available per wireless interface: continuous scanning mode and background scanning mode.

Continuous Scanning Mode

The continuous scanning mode is a dedicated scanning mode where the wireless interface performs scanning alone and does not perform the normal AP operation of servicing client traffic.

In continuous scanning mode the AP scans each channel for a channel scan time of one second and then moves to the next channel in the scan channel list. With a channel scan time of one second, the scan cycle time will take less than a minute (one second per channel). Once the entire scan channel list has been scanned the AP restarts scanning from the beginning of the scan channel list.
Background Scanning Mode

In background scanning mode the AP performs background scanning while performing normal AP operations on the wireless interface.

You can configure the scan cycle time between 1-1440 minutes (24 hours). The scan cycle time indicates how frequently a channel is sampled and defines the minimum attack period that can go unnoticed.

In background scanning mode the AP will scan one channel then wait for a time known as channel scan time. The channel scan time affects the amount of data collected during scanning and defines the maximum number of samples (possible detections) in one scan. This is increased to improve scanning efficiency; the tradeoff is that it decreases throughput. The optimum value for this parameter during background scanning mode is 20ms. The channel scan time is calculated from the scan cycle time parameter and the number of channels in the scan channel list as follows:

\[\text{channel scan time} = \frac{\text{scan cycle time} - (\text{channel scan time} \times \text{number of channels in the scan list})}{\text{number of channels in the scan list}}. \]

Rogue Scan Data Collection

The AP stores information gathered about detected stations during scanning in a Rogue Scan result table. The Rogue Scan result table can store a maximum of 2000 entries. When the table fills, the oldest entry gets overwritten. The Rogue Scan result table lists the following information about each detected station:

- Station Type: indicates one of the following types of station:
 - Unknown station
 - AP station
 - Infrastructure Client Station
 - IBSS Client Station
- MAC Address of the detected station
- Channel: the working channel of the detected station
- SNR: the SNR value of the last frame from the station as received by the AP
- BSSID: the BSSID field stores the:
 - MAC address of the associated Access Point in the case of a client.
 - Zero MAC address or MAC address of the partner Access Point if the AP is a partner of a WDS link

The AP ages out older entries in the Rogue Scan result table if a detected station is inactive for more than the Scan Result Table Ageing Time.
Rogue Scan

Perform this procedure to enable Rogue Scan and define the Scan Interval.

The Rogue Scan screen also displays the number of new Access Points and clients detected in the last scan on each wireless interface.

1. Enable the Security Alarm Group. Select the Security Alarm Group link from the Rogue Scan screen. Configure a Trap Host to receive the list of Access Points (and clients) detected during the scan.
2. Click Configure > Alarms > Rogue Scan.
3. Enable Rogue Scan on the wireless interface by checking Enable Rogue Scan.

NOTE

Rogue Scan cannot be enabled on a wireless interface when the Wireless Service Status on that interface is shutdown. First, resume service on the wireless interface.

4. Enter the Scan Mode. Select Background Scanning or Continuous Scanning. In Continuous Scanning mode the AP stops normal operation and scans continuously on that interface. In Background Scanning mode, the AP performs background scanning while doing normal AP operation on that interface.
5. If the Scan Mode is Background Scanning, then enter the Scan Interval.
 • The Scan Interval specifies the time period in minutes between scans in Background Scanning mode and can be set to any value between 1 and 1440 minutes.
6. Configure the Scan Result Table Ageing Time. The AP ages out older entries in the Rogue Scan result table if a detected station is inactive for more than this time. The valid range is from 60-7200 minutes, the default is 60 minutes.
7. Configure the Scan Results Trap Notification Mode to control the notification behavior when APs or stations are detected in a scan:
 • No Notification
 • Notify AP
 • Notify Client
 • Notify All (Notify both AP and Client detection)
8. Configure the Scan Results Trap Report Style to control the way detected stations are reported in the notification:
 • Report all detected stations since last scan (default)
 • Report all detected stations since start of scan
9. Click OK.

The results of the Rogue Scan can be viewed in the Status page in the HTTP interface.
Rogue Scan uses the selected wireless interface for scanning its coverage area for Access Points and Clients. To dedicate the AP's wireless interface to scanning and set the scan modes to continuous scan, note that while the wireless interface is in continuous scan mode it does not perform normal AP operations. To enable the AP's wireless interface to scan in the background while still performing normal AP operations, set the scan cycle time in minutes and set the scan mode to background scanning mode. Note that AP throughput decreases with an increase in scanning efficiency.

Note 1: When Rogue Scan is enabled, the Security Alarm Group must also be enabled and a True Host configured to receive the list of access points and clients detected during the scan.

Note 2: The scan parameter scan interval time can only be modified for background scanning mode.

Figure 4-25 Rogue Scan Screen
Bridge

The AP is a bridge between your wired and wireless networking devices. As a bridge, the functions performed by the AP include:

- MAC address learning
- Forward and filtering decision making
- Spanning Tree protocol used for loop avoidance

Once the AP is connected to your network, it learns which devices are connected to it and records their MAC addresses in the Learn Table. The table can hold up to 10,000 entries. To view the Learn Table, click on the Monitor button in the web interface and select the Learn Table tab.

The Bridge tab has four sub-tabs:
- Spanning Tree
- Storm Threshold
- Intra BSS
- Packet Forwarding

Spanning Tree

A Spanning Tree is used to avoid redundant communication loops in networks with multiple bridging devices. Bridges do not have any inherent mechanism to avoid loops, because having redundant systems is a necessity in certain networks. However, redundant systems can cause Broadcast Storms, multiple frame copies, and MAC address table instability problems.

Complex network structures can create multiple loops within a network. The Spanning Tree configuration blocks certain ports on AP devices to control the path of communication within the network, avoiding loops and following a spanning tree structure.

For more information on Spanning Tree protocol, please see Section 8.0 of the IEEE 802.1d standard. The Spanning Tree configuration options are advanced settings. SYSTIMAX recommends that you leave these parameters at their default values unless you are familiar with the Spanning Tree protocol.

Storm Threshold

Storm Threshold is an advanced Bridge setup option that you can use to protect the network against data overload by:

- Specifying a maximum number of frames per second as received from a single network device (identified by its MAC address).
- Specifying an absolute maximum number of messages per port.

The Storm Threshold parameters allow you to specify a set of thresholds for each port of the AP, identifying separate values for the number of broadcast messages/second and Multicast messages/second.

When the number of frames for a port or identified station exceeds the maximum value per second, the AP will ignore all subsequent messages issued by the particular network device, or ignore all messages of that type.

- **Address Threshold**: Enter the maximum allowed number of packets per second.
- **Ethernet Threshold**: Enter the maximum allowed number of packets per second.
- **Wireless Threshold**: Enter the maximum allowed number of packets per second.

Intra BSS

The wireless clients (or subscribers) that associate with a certain AP form the Basic Service Set (BSS) of a network infrastructure. By default, wireless subscribers in the same BSS can communicate with each other. However, some administrators (such as wireless public spaces) may wish to block traffic between wireless subscribers that are associated with the same AP to prevent unauthorized communication and to conserve bandwidth. This feature enables you to prevent wireless subscribers within a BSS from exchanging traffic.

Although this feature is generally enabled in public access environments, Enterprise LAN administrators use it to conserve wireless bandwidth by limiting communication between wireless clients. For example, this feature prevents peer-to-peer file sharing or gaming over the wireless network.

To block Intra BSS traffic, set **Intra BSS Traffic Operation** to **Block**.

To allow Intra BSS traffic, set **Intra BSS Traffic Operation** to **Passthru**.
Packet Forwarding

The Packet Forwarding feature enables you to redirect traffic generated by wireless clients that are all associated to the same AP to a single MAC address. This filters wireless traffic without burdening the AP and provides additional security by limiting potential destinations or by routing the traffic directly to a firewall. You can redirect to a specific port (Ethernet or WDS) or allow the bridge’s learning process (and the forwarding table entry for the selected MAC address) to determine the optimal port.

NOTE

The gateway to which traffic will be redirected should be a node on the Ethernet network. It should not be a wireless client.

Configuring Interfaces for Packet Forwarding

Configure your AP to forward packets by specifying interface port(s) to which packets are redirected and a destination MAC address.

1. Within the **Packet Forwarding Configuration** screen, check the box labeled **Enable Packet Forwarding**.
2. Specify a destination **Packet Forwarding MAC Address**. The AP will redirect all unicast, multicast, and broadcast packets received from wireless clients to the address you specify.
3. Select a **Packet Forwarding Interface Port** from the drop-down menu. You can redirect traffic to:
 - Ethernet
 - A WDS connection (see **Wireless Distribution System (WDS)** for details)
 - Any (traffic is redirected to a port based on the bridge learning process)
4. Click **OK** to save your changes.
QoS

Wireless Multimedia Extensions (WMM)/Quality of Service (QoS)

The AP supports Wi-Fi Multimedia which defines an intermediate solution for QoS functionality until the IEEE 802.11e specification is formally approved. WMM is based on a subset of the 802.11e standard, and defines enhancements to the MAC for wireless LAN applications with Quality of Service requirements, which include transport of voice traffic over IEEE 802.11 wireless LANs.

The enhancements are in the form of changes in protocol frame formats (addition of new fields and information elements), addition of new messages, definition of new protocol actions, channel access mechanisms (differentiated control of access to medium) and network elements (QoS/WMM aware APs, STAs), and configuration management. WMM supports Enhanced Distributed Channel Access (EDCA) for prioritized QoS services. The WMM/QoS feature can be enabled or disabled.

QoS Policies

Perform the following procedure to enable QoS and add QoS policies:

1. Click Configure > QoS > Policy.

 ![Figure 4-26 QoS Policies](image)

2. To enable QoS, check the Enable Quality of Service checkbox.

3. Configure the QoS Maximum Medium Threshold for all Admission Controls. Admission will be granted if the new requested traffic stream and already admitted time is less than the medium maximum threshold.

4. To add or edit a QoS Policy, scroll down to the "QoS Policies Table" box and click the Add or Edit button. The Add Entries or Edit Entries screen appears. See Figure 4-27.
5. Enter the **Policy Name**.

6. Select the **Policy Type**:
 - `inlayer2`: inbound traffic direction, Layer 2 traffic type
 - `inlayer3`: inbound traffic direction, Layer 3 traffic type
 - `outlayer2`: outbound traffic direction, Layer 2 traffic type
 - `outlayer3`: inbound traffic direction, Layer 3 traffic type
 - `spectralink`: SpectraLink traffic

7. Enter the **Priority Mapping Index**.
 For layer 2 policies, an index from the 802.1p to 802.1d mapping table should be specified. For layer 3 policies, an index from the 802.1p to IP DSCP mapping table should be specified. No mapping index is required for SpectraLink.

8. Enable QoS marking by placing a check in the **Enable QoS Marking** box.

9. Click **OK**.
Priority Mapping

Use this page to configure QoS 802.1p to 802.1d priority mappings (for layer 2 policies) and IP DSCP to 802.1d priority mappings (for layer 3 policies). The first entry in each table contains the recommended priority mappings. Custom entries can be added to each table with different priority mappings.

1. Click **Configure > QoS > Priority Mapping**.

 ![Priority Mapping Table](image)

 802.1D to 802.1p Priority Mapping Table

<table>
<thead>
<tr>
<th>Index</th>
<th>802.1D Priority</th>
<th>802.1p Priority</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Enable</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Enable</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>Enable</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>Enable</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>Enable</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>5</td>
<td>Enable</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
<td>Enable</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>7</td>
<td>Enable</td>
</tr>
</tbody>
</table>

 802.1D to IP DSCP Priority Mapping Table

<table>
<thead>
<tr>
<th>Index</th>
<th>802.1D Priority</th>
<th>IP DSCP Range</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0-7</td>
<td>Enable</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>8-15</td>
<td>Enable</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>16-23</td>
<td>Enable</td>
</tr>
</tbody>
</table>

 Figure 4-28 Priority Mapping
2. Click **Add** in the QoS 802.1D to 802.1p Priority Mapping Table.

![QoS 802.1D to 802.1p Mapping Table - Add Entries](image)

Figure 4-29 Add Priority Mapping Entry

3. Select the 802.1p Priority (from 0-7) for 802.1d Priorities 0-7.
4. Click **OK**.
5. Click **Add** in the IP Precedence/DSCP ranges and 802.1d Priority table.
6. Select the IP DSCP Range for each 802.1d Priority.
7. Click **OK**.

NOTE
Changes to Priority Mapping require a reboot of the AP to take effect.
Enhanced Distributed Channel Access (EDCA)

WMM uses Enhanced Distributed Channel Access, a prioritized CSMA/CA access mechanism used by WMM-enabled clients/AP in a WMM enabled BSS to realize different classes of differentiated Channel Access.

A wireless Entity is defined as all wireless clients and APs in the wireless medium contending for the common wireless medium. EDCA uses a separate channel access function for each of the Access Categories (Index) within a wireless entity. Each channel access function in a wireless entity that contends for the wireless medium as if it were a separate client contending for the wireless medium. Different channel access functions in a given Wireless Entity contend among themselves for access to the wireless medium in addition to contending with other clients.

STA EDCA Table and AP EDCA Table

This page is used to configure the client (STA) and AP Enhanced Distributed Channel Access (EDCA) parameters. The EDCA parameter set provides information needed by the client stations for proper QoS operation during the wireless contention period. These parameters are used by the QoS enabled AP to establish policy, to change policies when accepting new stations or new traffic, or to adapt to changes in the offered load. The EDCA parameters assign priorities to traffic types where higher priority packets gain access to the wireless medium more frequently than lower priority packets.

NOTE

We have defined default recommended values for EDCA parameters; we recommend not modifying EDCA parameters unless strictly necessary.

Perform the following procedure to configure the Station and AP EDCA tables.

1. Click Configure > QoS > EDCA.

<table>
<thead>
<tr>
<th>STA EDCA Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Category</td>
</tr>
<tr>
<td>Best Effort</td>
</tr>
<tr>
<td>Background</td>
</tr>
<tr>
<td>Video</td>
</tr>
<tr>
<td>Voice</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AP EDCA Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Category</td>
</tr>
<tr>
<td>Best Effort</td>
</tr>
<tr>
<td>Background</td>
</tr>
<tr>
<td>Video</td>
</tr>
<tr>
<td>Voice</td>
</tr>
</tbody>
</table>

Figure 4-30 EDCA Tables
2. Click **Edit** and configure the following parameters in each table:

![Figure 4-31 Edit AP EDCA Tables](image)

- **Index**: read-only. Indicates the index of the Access Category (1-4) being defined.
- **CWMin**: minimum Contention Window. Configurable range is 0 to 255.
- **CWMax**: maximum Contention Window. Configurable range is 0 to 65535.
- **AIFSN**: Arbitration IFS per access category. Configurable range is 2 to 15.
- **Tx OP Limit**: The Transmission Opportunity Limit. The Tx OP is an interval of time during which a particular QoS enhanced client has the right to initiate a frame exchange sequence onto the wireless medium. The Tx OP Limit defines the upper limit placed on the value of Tx OP a wireless entity can obtain for a particular access category. Configurable range is 0 to 65535.
- **Admission Control Mandatory**: Possible values are True or False. Admission control defines if an Access Point accepts or rejects a requested traffic stream with certain QoS specifications, based on available channel capacity and link conditions. Admission control can be configured for each Access Category (Index). On the Policy sub-tab, the user can also configure a *medium maximum threshold* for all Admission Controls. Admission will be granted if the new requested traffic stream and already admitted time is less than the *medium maximum threshold*.

NOTE

Changes to EDCA parameters require a reboot of the AP to take effect.
RADIUS Profiles

Configuring RADIUS profiles on the AP allows a user to define a profile for RADIUS Servers used by the system or by a VLAN. The network administrator can define RADIUS Servers per Authentication Mode and per VLAN. The AP communicates with the RADIUS server defined in a profile to provide the following features:

- MAC Access Control Via RADIUS Authentication
- 802.1x Authentication using RADIUS
- RADIUS Accounting

Also, RADIUS Based Management Access allows centralized user management.

The network administrator can configure default RADIUS authentication servers to be used on a system-wide basis, or in networks with VLANs enabled the administrator can also configure separate authentication servers to be used for MAC authentication, EAP authentication, or Accounting in each VLAN. You can configure the AP to communicate with up to six different RADIUS servers per VLAN/SSID:

- Primary Authentication Server (MAC-based authentication)
- Back-up Authentication Server (MAC-based authentication)
- Primary Authentication Server (EAP/802.1x authentication)
- Back-up Authentication Server (EAP/802.1x authentication)
- Primary Accounting Server
- Back-up Accounting Server

The back-up servers are optional, but when configured, the AP will communicate with the back-up server if the primary server is off-line. After the AP has switched to the backup server, it will periodically check the status of the primary RADIUS server every five (5) minutes. Once the primary RADIUS server is again online, the AP automatically reverts from the backup RADIUS server back to the primary RADIUS server. All subsequent requests are then sent to the primary RADIUS server.

You can view monitoring statistics for each of the configured RADIUS servers.

RADIUS Servers per Authentication Mode and per VLAN

The user can configure separate RADIUS authentication servers for each authentication mode and for each SSID (VLAN). For example:

- The user can configure separate RADIUS servers for RADIUS MAC authentication and 802.1x authentication
- The user can configure separate RADIUS servers for each VLAN: the Sales VLAN could support only WEP clients, whereas the Marketing VLAN could support 802.1x and WEP clients.

Figure 4-32 RADIUS Servers per VLAN

This figure shows a network with separate authentication servers for each authentication type and for each VLAN. The clients in VLAN 1 are authenticated using the authentication servers configured for VLAN 1. The type of authentication
server used depends on whether the authentication is done for an 802.1x client or a non-802.1x client. The clients in VLAN 2 are authenticated using a different set of authentication servers configured for authenticating users in VLAN 2. Authentication servers for each VLAN shall be configured as part of the configuration options for that VLAN. RADIUS profiles are independent of VLANs. The user can define any profile to be the default and associate all VLANs to that profile. Four profiles are created by default, “MAC Authentication”, “EAP Authentication”, “Accounting”, and “Management”.

RADIUS Servers Enforcing VLAN Access Control

A RADIUS server can be used to enforce VLAN access control in two ways:

- Authorize the SSID the client uses to connect to the AP. The SSID determines the VLAN that the client gets assigned to.
- Assigning the user to a VLAN by specifying the VLAN membership information of the user.

Configuring RADIUS Profiles

A RADIUS server Profile consists of a Primary and a Secondary RADIUS server that get assigned to act as either MAC Authentication servers, 802.1x/EAP Authentication servers, or Accounting Servers in the VLAN Configuration. Refer to Configuring Security Profiles.

The RADIUS Profiles Sub-tab allows you to add new RADIUS profiles or modify or delete existing profiles.

Figure 4-33 RADIUS Server Profiles

Adding or Modifying a RADIUS Server Profile

Perform the following procedure to add a RADIUS server profile and to configure its parameters.

1. Click Add to create a new profile. To Modify an existing profile, select the profile and click Edit. To delete an existing profile, select the profile and click Delete. You cannot delete a RADIUS server profile if you are using it in an SSID. Also, the four default RADIUS server profiles cannot be deleted (indices 1.1, 1.2, 2.1, 2.2, 3.1, 3.2, and 4.1, 4.2.)

2. Configure the following parameters for the RADIUS Server profile (refer to Figure 4-34):

 NOTE

 This page configures only the Primary RADIUS Server associated with the profile. After configuring these parameters, save them by clicking OK. Then, to configure the Secondary RADIUS Server, edit the profile from the main page.
Figure 4-34 Add RADIUS Server Profile

- **Server Profile Name**: the profile name. This is the name used to associate a VLAN to the profile. Refer to Configuring Security Profiles. The Server Profile Name is also used in the Configure > Management > Services page to specify the RADIUS profile to be used for RADIUS Based Management Access.

- **MAC Address Format Type**: This parameter should correspond to the format in which the clients’ 12-digit MAC addresses are listed within the RADIUS server. Available options are:
 - Dash delimited: dash between each pair of digits: xx-yy-zz-aa-bb-cc
 - Colon delimited: colon between each pair of digits: xx:yy:zz:aa:bb:cc
 - Single dash delimited: dash between the sixth and seventh digits: xxyyzz-aabbcc
 - No delimiters: No characters or spaces between pairs of hexadecimal digits: xxyyzzaabbcc

- **Accounting update interval**: Enter the time interval (in minutes) for sending Accounting Update messages to the RADIUS server. A value of 0 (default) means that the AP will not send Accounting Update messages.

- **Accounting inactivity timer**: Enter the accounting inactivity timer. This parameter supports a value from 1-60 minutes. The default is 5 minutes.

- **Authorization lifetime**: Enter the time, in seconds, each client session may be active before being automatically re-authenticated. This parameter supports a value between 900 and 43200 seconds. The default is 900 sec.

- **Server Addressing Format**: select IP Address or Name. If you want to identify RADIUS servers by name, you must configure the AP as a DNS Client. See DNS Client for details.

- **Server Name/IP Address**: Enter the server’s name or IP address.

- **Destination Port**: Enter the port number which the AP and the server will use to communicate. By default, RADIUS servers communicate on port 1812.

- **Server VLAN ID**: Indicates the VLAN that uses this RADIUS server profile. If VLAN is disabled, the text “VLAN is disabled” will appear.

- **Shared Secret** and **Confirm Shared Secret**: Enter the password shared by the RADIUS server and the AP. The same password must also be configured on the RADIUS server.

- **Response Time (seconds)**: Enter the maximum time, in seconds, that the AP should wait for the RADIUS server to respond to a request. The range is 1-10 seconds; the default is 3 seconds.
• **Maximum Retransmissions (0-4):** Enter the maximum number of times an authentication request may be transmitted. The range is 0 to 4, the default is 3.
• **Server Status:** Select Enable from the drop-down box to enable the RADIUS Server Profile.

3. Click **OK**.
4. Select the Profile and click **Edit** to configure the Secondary RADIUS Server, if required.

MAC Access Control Via RADIUS Authentication

If you want to control wireless access to the network and if your network includes a RADIUS Server, you can store the list of MAC addresses on the RADIUS server rather than configure each AP individually. You can define a RADIUS Profile that specifies the IP Address of the server that contains a central list of MAC Address values identifying the authorized stations that may access the wireless network. You must specify information for at least the primary RADIUS server. The back-up RADIUS server is optional.

NOTE

Each VLAN can be configured to use a separate RADIUS server (and backup server) for MAC authentication. MAC access control can be separately enabled for each VLAN.

NOTE

Contact your RADIUS server manufacturer if you have problems configuring the server or have problems using RADIUS authentication.

802.1x Authentication using RADIUS

You must configure a primary EAP/802.1x Authentication server to use 802.1x security. A back-up server is optional.

NOTE

Each VLAN can be configured to use a separate RADIUS server (and backup server) for 802.1x authentication. 802.1x authentication ("EAP authentication") can be separately enabled for each VLAN.

RADIUS Accounting

Using an external RADIUS server, the AP can track and record the length of client sessions on the Access Point by sending RADIUS accounting messages per RFC2866. When a wireless client is successfully authenticated, RADIUS accounting is initiated by sending an "Accounting Start" request to the RADIUS server. When the wireless client session ends, an "Accounting Stop" request is sent to the RADIUS server.

NOTE

Each VLAN can be configured to use a separate RADIUS accounting server (and backup accounting server).

Session Length

Accounting sessions continue when a client reauthenticate to the same AP. Sessions are terminated when:
• A client disassociates.
• A client does not transmit any data to the AP for a fixed amount of time.
• A client is detected on a different interface.

If the client roams from one AP to another, one session is terminated and a new session is begun.

NOTE

This feature requires RADIUS authentication using MAC Access Control or 802.1x. Wireless clients configured in the Access Point's static MAC Access Control list are not tracked.

Authentication and Accounting Attributes

Additionally, the AP supports a number of Authentication and Accounting Attributes defined in RFC2865, RFC2866, RFC2869, and RFC3580.
Authentication Attributes

• State: Received in Access-Accept Packet by the AP during Authentication and sent back as-is during Re-Authentication.
• Class: Received in Access-Accept Packet by the AP during Authentication and back as in Accounting Packets.
• Session-Timeout
 – If the RADIUS server does not send a Session-Timeout, the AP will set the subscriber expiration time to 0, which means indefinite access.
 – The Termination Action attribute defines how the Session-Timeout attribute will be interpreted. If the Termination Action is DEFAULT, then the session is terminated on expiration of the Session-Timeout time interval. If Termination Action is RADIUS-Request, then re-authentication is done on expiration on the session.
 – If the RADIUS server sends a Session-Timeout, the value specified by the Session-Timeout attribute will take precedence over the configured Authorization Lifetime value.
• Termination-Action
 – Valid values are: Default (0), RADIUS-Request (1)
• Idle Timeout
 – The AP internally maintains the Idle-Timeout attribute obtained for each of the users during their authentication process, and uses this time interval in place of accounting inactivity time for timing out clients.
• Calling Station Id
 – MAC address of the client getting authenticated.
• Called Station Id
 – The AP sends the MAC address of its own wireless interface with which the client getting authenticated is getting associated, appended with the SSID. If VLAN is enabled, the SSID and corresponding VLAN ID get appended.
• Acct-Interim-Interval
 – Obtained during the Authentication process and used for determining the time interval for sending Accounting Update messages.
 – This attribute value takes precedence over the value of the Accounting Update Interval.

Accounting Attributes

• Acct-Delay-Time
 – Indicates how many seconds the AP has been trying to send a particular packet related to a particular user. This time can be used at the server to determine the approximate time of the event generating this accounting request.
• Acct-Session-Time
 – Acct-Session-Time is calculated the following way (for each transmitted/retransmitted Acct-Stop):
 \[\text{Acct-Session-Time} = \text{time of last sent packet} - \text{subscriber login time}\].
• Acct-Input-Octets
 – Number of octets (bytes) received by subscriber.
• Acct-Output-Octets
 – Number of octets (bytes) sent by subscriber.
• Acct-Input-Packets
 – Number of packets received by subscriber.
• Acct-Output-Packets
 – Number of packets sent by subscriber.
• Acct-Terminate Cause
 – Indicates how the session was terminated.
• Vendor Specific Attributes
SSID/VLAN/Security

The AP provides several security features to protect your network from unauthorized access. The SSID/VLAN/Security tab contains the following sub-tabs that allow for configuration of security features:

- Management VLAN
- Security Profile
- MAC Access
- Wireless

The AP also provides Broadcast SSID/Closed System and Rogue Scan to protect your network from unauthorized access. See the Broadcast SSID and Closed System and Rogue Scan sections for more information.

Management VLAN

VLAN Overview

Virtual Local Area Networks (VLANs) are logical groupings of network hosts. Defined by software settings, other VLAN members or resources appear (to clients) to be on the same physical segment, no matter where they are attached on the logical LAN or WAN segment. They simplify traffic flow between clients and their frequently-used or restricted resources.

VLANs now extend as far as the reach of the Access Point signal. Clients can be segmented into wireless sub-networks via SSID and VLAN assignment. A Client can access the network by connecting to an AP configured to support its assigned SSID/VLAN.

AP devices are fully VLAN-ready; however, by default VLAN support is disabled. Before enabling VLAN support, certain network settings should be configured, and network resources such as a VLAN-aware switch, a RADIUS server, and possibly a DHCP server should be available.

Once enabled, VLANs are used to conveniently, efficiently, and easily manage your network in the following ways:

- Manage adds, moves, and changes from a single point of contact
- Define and monitor groups
- Reduce broadcast and multicast traffic to unnecessary destinations
 - Improve network performance and reduce latency
- Increase security
 - Secure network restricts members to resources on their own VLAN
 - Clients roam without compromising security

VLAN tagged data is collected and distributed through an AP's wireless interface(s) based on Network Name (SSID). An Ethernet port on the Access Point connects a wireless cell or network to a wired backbone. The Access Points communicate across a VLAN-capable switch that analyzes VLAN-tagged packet headers and directs traffic to the appropriate ports. On the wired network, a RADIUS server authenticates traffic and a DHCP server manages IP addresses for the VLAN(s). Resources like servers and printers may be present, and a hub may include multiple APs, extending the network over a larger area.
In this figure, the numbered items correspond to the following components:

1. VLAN-enabled Access Point
2. VLAN-aware switch (IEEE 802.1Q uplink)
3. AP management via wired host (SNMP, Web interface or CLI)
4. DHCP Server
5. RADIUS Server
6. VLAN 1
7. VLAN 2

Figure 4-35 Components of a Typical VLAN

VLAN Workgroups and Traffic Management

Access Points that are not VLAN-capable typically transmit broadcast and multicast traffic to all wireless Network Interface Cards (NICs). This process wastes wireless bandwidth and degrades throughput performance. In comparison, a VLAN-capable AP is designed to efficiently manage delivery of broadcast, multicast, and unicast traffic to wireless clients.

The AP assigns clients to a VLAN based on a Network Name (SSID). The AP can support up to 16 SSID/VLAN pairs per radio.

The AP matches packets transmitted or received to a network name with the associated VLAN. Traffic received by a VLAN is only sent on the wireless interface associated with that same VLAN. This eliminates unnecessary traffic on the wireless LAN, conserving bandwidth and maximizing throughput.

In addition to enhancing wireless traffic management, the VLAN-capable AP supports easy assignment of wireless users to workgroups. In a typical scenario, each user VLAN represents a workgroup; for example, one VLAN could be used for an EMPLOYEE workgroup and the other, for a GUEST workgroup.

In this scenario, the AP would assign every packet it accepted to a VLAN. Each packet would then be identified as EMPLOYEE or GUEST, depending on which radio received it. The AP would insert VLAN headers or “tags” with identifiers into the packets transmitted on the wired backbone to a network switch.

Finally, the switch would be configured to route packets from the EMPLOYEE workgroup to the appropriate corporate resources such as printers and servers. Packets from the GUEST workgroup could be restricted to a gateway that allowed access to only the Internet. A member of the GUEST workgroup could send and receive e-mail and access the Internet, but would be prevented from accessing servers or hosts on the local corporate network.
Typical User VLAN Configurations

VLANs segment network traffic into workgroups, which enable you to limit broadcast and multicast traffic. Workgroups enable clients from different VLANs to access different resources using the same network infrastructure. Clients using the same physical network are limited to those resources available to their workgroup.

The AP can segment users into a maximum of 16 different workgroups based on an SSID/VLAN pair (also referred as a VLAN Workgroup or a Sub-network).

The three primary scenarios for using VLAN workgroups are as follows:

1. VLAN disabled: Your network does not use VLANs, and you cannot configure the AP to use multiple SSIDs.
2. VLAN enabled, each VLAN workgroup uses a different VLAN ID Tag
3. VLAN enabled, a mixture of Tagged and Untagged workgroups
4. VLAN enabled, all VLANs untagged: VLAN is enabled in order to use SSID. (Note that typical use of SSID assumes actual use of VLANs.)

Enabling or Disabling VLAN Protocol

Control Access to the AP

Management access to the AP can easily be secured by making management stations or hosts and the AP itself members of a common VLAN. Simply configure a non-zero management VLAN ID and enable VLAN to restrict management of the AP to members of the same VLAN.

⚠️ CAUTION

If a non-zero management VLAN ID is configured then management access to the AP is restricted to wired or wireless hosts that are members of the same VLAN. Ensure your management platform or host is a member of the same VLAN before attempting to manage the AP.

1. Click Configure > SSID/VLAN/Security > Mgmt VLAN.
2. Set the VLAN Management ID to a value between -1 and 4094 (a value of 0 disables VLAN management).
3. Place a check mark in the Enable VLAN Protocol box.

Provide Access to a Wireless Host in the Same Workgroup

The VLAN feature can allow wireless clients to manage the AP. If the VLAN Management ID matches a VLAN User ID, then those wireless clients who are members of that VLAN will have AP management access.

⚠️ CAUTION

Once a VLAN Management ID is configured and is equivalent to one of the VLAN User IDs on the AP, all members of that User VLAN will have management access to the AP. Be careful to restrict VLAN membership to those with legitimate access to the AP.

1. Click Configure > SSID/VLAN/Security > Mgmt VLAN.
2. Set the VLAN Management ID to use the same VLAN ID as one of the configured SSID/VLAN pairs.
3. Place a check mark in the Enable VLAN Protocol box.

Disable VLAN Management

1. Click Configure > SSID/VLAN/Security > Mgmt VLAN.
2. Remove the check mark from the Enable VLAN Protocol box (to disable all VLAN functionality) or set the VLAN Management ID to -1 (to disable VLAN Management only).

⚠️ NOTE

If you disable VLAN Protocol, you will be unable to configure security per SSID.
Security Profile

The AP supports the following Security features:

- **WEP Encryption**: The original encryption technique specified by the IEEE 802.11 standard.
- **802.1x Authentication**: An IEEE standard for client authentication.
- **Wi-Fi Protected Access (WPA/WPA2)**: A new standard that provides improved encryption security over WEP.

WEP Encryption

The IEEE 802.11 standards specify an optional encryption feature, known as Wired Equivalent Privacy or WEP, that is designed to provide a wireless LAN with a security level equal to what is found on a wired Ethernet network. WEP encrypts the data portion of each packet exchanged on an 802.11 network using an Encryption Key (also known as a WEP Key).

When Encryption is enabled, two 802.11 devices must have the same Encryption Keys and both devices must be configured to use Encryption in order to communicate. If one device is configured to use Encryption but a second device is not, then the two devices will not communicate, even if both devices have the same Encryption Keys.

802.1x Authentication

IEEE 802.1x is a standard that provides a means to authenticate and authorize network devices attached to a LAN port. A port in the context of IEEE 802.1x is a point of attachment to the LAN, either a physical Ethernet connection or a wireless link to an Access Point. 802.1x requires a RADIUS server and uses the Extensible Authentication Protocol (EAP) as a standards-based authentication framework, and supports automatic key distribution for enhanced security. The EAP-based authentication framework can easily be upgraded to keep pace with future EAP types.

Popular EAP types include:

- **EAP-Message Digest 5 (MD5)**: Username/Password-based authentication; does not support automatic key distribution
- **EAP-Transport Layer Security (TLS)**: Certificate-based authentication (a certificate is required on the server and each client); supports automatic key distribution
- **EAP-Tunneled Transport Layer Security (TTLS)**: Certificate-based authentication (a certificate is required on the server; a client’s username/password is tunneled to the server over a secure connection); supports automatic key distribution
- **PEAP - Protected EAP with MS-CHAP**: Secure username/password-based authentication; supports automatic key distribution

Different servers support different EAP types and each EAP type provides different features. Refer to the documentation that came with your RADIUS server to determine which EAP types it supports.

NOTE

The AP supports the following EAP types when Security Mode is set to **802.1x, WPA**, or **802.11i (WPA2)**: EAP-TLS, PEAP, EAP-TTLS, EAP-MD5, and EAP-SIM.

Authentication Process

There are three main components in the authentication process. The standard refers to them as:

1. Supplicant (client PC)
2. Authenticator (Access Point)
3. Authentication server (RADIUS server)

When the Security Mode is set to 802.1x Station, WPA Station, or 802.11i Station you need to configure your RADIUS server for authentication purposes.

Prior to successful authentication, an unauthenticated client PC cannot send any data traffic through the AP device to other systems on the LAN. The AP inhibits all data traffic from a particular client PC until the client PC is authenticated. Regardless of its authentication status, a client PC can always exchange 802.1x messages in the clear with the AP (the client begins encrypting data after it has been authenticated).
Figure 4-36 RADIUS Authentication Illustrated

The AP acts as a pass-through device to facilitate communications between the client PC and the RADIUS server. The AP (2) and the client (1) exchange 802.1x messages using an EAPOL (EAP Over LAN) protocol (A). Messages sent from the client station are encapsulated by the AP and transmitted to the RADIUS (3) server using EAP extensions (B). Upon receiving a reply EAP packet from the RADIUS, the message is typically forwarded to the client, after translating it back to the EAPOL format. Negotiations take place between the client and the RADIUS server. After the client has been successfully authenticated, the client receives an Encryption Key from the AP (if the EAP type supports automatic key distribution). The client uses this key to encrypt data after it has been authenticated.

For 802.11a and 802.11b/g clients that communicate with an AP, each client receives its own unique encryption key; this is known as Per User Per Session Encryption Keys.

Wi-Fi Protected Access (WPA/WPA2)

Wi-Fi Protected Access (WPA) is a security standard designed by the Wi-Fi Alliance in conjunction with the Institute of Electrical and Electronics Engineers (IEEE). The AP supports WPA2, defined in the IEEE 802.11i security standard. WPA is a replacement for Wired Equivalent Privacy (WEP), the encryption technique specified by the original 802.11 standard. WEP has several vulnerabilities that have been widely publicized. WPA addresses these weaknesses and provides a stronger security system to protect wireless networks.

WPA provides the following new security measures not available with WEP:

- Improved packet encryption using the Temporal Key Integrity Protocol (TKIP) and the Michael Message Integrity Check (MIC).
- Per-user, per-session dynamic encryption keys:
 - Each client uses a different key to encrypt and decrypt unicast packets exchanged with the AP
 - A client's key is different for every session; it changes each time the client associates with an AP
 - The AP uses a single global key to encrypt broadcast packets that are sent to all clients simultaneously
 - Encryption keys change periodically based on the Re-keying Interval parameter
 - WPA uses 128-bit encryption keys
- Dynamic Key distribution
 - The AP generates and maintains the keys for its clients
 - The AP securely delivers the appropriate keys to its clients
- Client/server mutual authentication
 - 802.1x
 - Pre-shared key (for networks that do not have an 802.1x solution implemented)

\[\text{NOTE}\]

For more information on WPA, see the Wi-Fi Alliance Web site at \text{http://www.wi-fi.org}. The AP supports the following WPA authentication modes:

- **WPA:** The AP uses 802.1x to authenticate clients. You should only use an EAP that supports mutual authentication and session key generation, such as EAP-TLS, EAP-TTLS, and PEAP. See \text{802.1x Authentication} for details.
- **WPA-PSK (Pre-Shared Key):** For networks that do not have 802.1x implemented, you can configure the AP to authenticate clients based on a Pre-Shared Key. This is a shared secret that is manually configured on the AP and each of its clients. The Pre-Shared Key must be 256 bits long, which is either 64 hexadecimal digits or 32 alphanumeric characters. The AP also supports a PSK Pass Phrase option to facilitate the creation of the Pre-Shared Key (so a user can enter an easy-to-remember phrase rather than a string of characters).
- **802.11i** (also known as WPA2): The AP authenticates clients according to the 802.11i standard, using 802.1x authentication, an AES cipher, and re-keying.
- **802.11i-PSK** (also known as WPA2 PSK): The AP uses an AES cipher, and authenticates clients based on a Pre-Shared Key. The Pre-Shared Key must be 256 bits long, which is either 64 hexadecimal digits or 32 alphanumerical characters. The AP also supports a **PSK Pass Phrase** option to facilitate the creation of the Pre-Shared Key (so a user can enter an easy-to-remember phrase rather than a string of characters).

Authentication Protocol Hierarchy

There is a hierarchy of authentication protocols defined for the AP.

The hierarchy is as follows, from Highest to lowest:

- 802.1x authentication
- MAC Access Control via RADIUS Authentication
- MAC Access Control through individual APs’ MAC Access Control Lists

If you have both 802.1x and MAC authentication enabled, the 802.1x results will take effect. This is required in order to propagate the WEP keys to the clients in such cases. Once you disable 802.1x on the AP, you will see the effects of MAC authentication.

VLANs and Security Profiles

The AirSPEED AP541 allows you to segment wireless networks into multiple sub-networks based on Network Name (SSID) and VLAN membership. A Network Name (SSID) identifies a wireless network. Clients associate with Access Points that share an SSID. During installation, the Setup Wizard prompts you to configure a Primary Network Name for each wireless interface.

After initial setup and once VLAN is enabled, the AP can be configured to support up to 16 SSIDs per wireless interface to segment wireless networks based on VLAN membership.

Each VLAN can associated to a Security Profile and RADIUS Server Profiles. A Security Profile defines the allowed wireless clients, and authentication and encryption types. Refer to **VLANs and Security Profiles** for configuration details.
Configuring Security Profiles

Security policies can be configured and applied on the AP as a whole, or on a per VLAN basis. When VLAN is disabled on the AP, the user can configure a security profile for each interface of the AP. When VLANs are enabled and Security per SSID is enabled, the user can configure a security profile for each VLAN.

The user defines a security policy by specifying one or more values for the following parameters:
- Wireless STA types (WPA station, 802.11i (WPA2) station, 802.1x station, WEP station) that can associate to the AP.
- Authentication mechanisms (802.1x, RADIUS MAC authentication) that are used to authenticate clients for each type of station.
- Cipher Suites (CCMP, TKIP, WEP) used for encapsulating the wireless data for each type of station.

Up to 16 security profiles can be configured per wireless interface.

![Security Profile Configuration](image)

Figure 4-37 Security Profile Configuration

2. Click Add in the Security Profile Table to create a new entry. To Modify an existing profile, select the profile and click Edit. To delete an existing profile, select the profile and click Delete. You cannot delete a Security Profile used in an SSID. Note that the first Security Profile (index 1.1 to 1.7) cannot be deleted.

3. Configure one or more types of wireless stations (security modes) that are allowed access to the AP under the security profile. The WEP/PSK parameters are separately configurable for each security mode. To enable a security mode in the profile (Non Secure Station, WEP Station, 802.1x Station, WPA Station, WPA-PSK Station, 802.11i (WPA2) Station, 802.11i-PSK Station), check the box next to the mode.

 If the security mode selected in a profile is WEP, WPA-PSK, or 802.11i-PSK, then you must configure the WEP or Pre-Shared Keys.

4. Configure the parameters as follows for each enabled security mode. Refer to Figure 4-38:
 - **Non Secure Station**:
 - Authentication Mode: None. The AP allows access to Stations without authentication.
 - Cipher: None
 - **WEP Station**:
 - Authentication Mode: None
 - Cipher: WEP
 - Encryption Key 0, Encryption Key 1, Encryption Key 2, Encryption Key 3
• Encryption Key Length: 64, 128, or 152 Bits.
 — For 64-bit encryption, an encryption key is 10 hexadecimal characters (0-9 and A-F) or 5 ASCII characters (see ASCII Character Chart).
 — For 128-bit encryption, an encryption key is 26 hexadecimal characters or 13 ASCII characters.
 — For 152-bit encryption, an encryption key is 32 hexadecimal characters or 16 ASCII characters.
• Encryption Transmit Key: select Key 0, Key 1, Key 2, or Key 3

• **802.1x Station:**
 • Authentication Mode: 802.1x
 • Cipher: WEP
 — If 802.1x is enabled simultaneously with WEP, the 802.1x Station's encryption key length is determined by the WEP encryption key.

• **WPA Station:**
 • Authentication Mode: 802.1x
 • Cipher: TKIP

• **WPA-PSK Station:**
 • Authentication Mode: PSK
 • Cipher: TKIP
 • PSK Passphrase: an 8-63 character user-defined phrase. It is recommended a passphrase of at least 13 characters, including both letters and numbers, and upper and lower case characters to ensure that the generated key cannot be easily deciphered by network infiltrators.

• **802.11i Station:**
 • Authentication Mode: 802.1x
 • Cipher: AES

• **802.11i-PSK Station:**
 • Authentication Mode: PSK
 • Cipher: AES
 • PSK Passphrase: an 8-63 character user-defined phrase. It is recommended a passphrase of at least 13 characters, including both letters and numbers, and upper and lower case characters to ensure that the generated key cannot be easily deciphered by network infiltrators.

5. When finished configuring all parameters, click **OK**.

6. If you selected a Security Mode of 802.1x Station or WPA Station, you must configure a RADIUS 802.1x/EAP server. Refer to **RADIUS Profiles**.

Security Profile 1 will be used by default for all wireless interfaces.

7. Refer to the following section for advanced VLAN configuration options: **Adding or Modifying an SSID/VLAN with VLAN Protocol Disabled**.

8. Reboot the AP.
Security Profile Table - Add Entries

This page is used to edit a Security Profile.

If the WEP security mode is configured, then the appropriate key size must be configured. The access point supports 64, 128, and 152 bit encryption keys. The following table provides information on how to configure encryption keys using HEX or ASCII values.

<table>
<thead>
<tr>
<th>Configuration in Hex</th>
<th>Configuration in ASCII</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 bit encryption key</td>
<td>10 characters (C-F)</td>
</tr>
<tr>
<td>128 bit encryption key</td>
<td>26 characters (C-F)</td>
</tr>
<tr>
<td>152 bit encryption key</td>
<td>32 characters (C-F)</td>
</tr>
</tbody>
</table>

If the WPA/PSK or 802.11i/PSK security mode is configured, then the appropriate PSK passphrase must be configured. The PSK passphrase consists of a alphanumeric string from 8 to 63 characters.

802.1x, WPA, or 802.11i security mode can be configured only if an EAP RADIUS server profile is configured and enabled. Certain security modes and their combinations may not be available depending on the security capabilities of the wireless interface.

Note: Changes to these parameters require access point reboot in order to take effect.

Figure 4-38 Security Profile Table - Add Entries
MAC Access

The MAC Access sub-tab allows you to build a list of stations, identified by their MAC addresses, authorized to access the network through the AP. The list is stored inside each AP within your network. Note that you must reboot the AP for any changes to the MAC Access Control Table to take effect. Up to 1000 entries can be made in the table.

The “MAC ACL Status” parameter (configurable by clicking SSID/VLAN > Wireless) is per VLAN if VLAN Management is enabled. All other parameters besides “MAC ACL Status” are configured per AP, even if VLAN is enabled.

The following list details the configurable MAC Access parameters.

NOTE

MAC Access Control status is enabled or disabled when configuring each Security Profile.

• **Operation Type:** Choose between **Passthru** and **Block**. This determines how the stations identified in the MAC Access Control Table are filtered.
 • If set to **Passthru**, only the addresses listed in the Control Table will pass through the bridge.
 • If set to **Block**, the bridge will block traffic to or from the addresses listed in the Control Table.

• **MAC Access Control Table:** Click **Add** to create a new entry. Click **Edit** to change an existing entry. Each entry contains the following field:
 – **MAC Address:** Enter the wireless client’s MAC address.
 – **Comment:** Enter an optional comment such as the client’s name.
 – **Status:** The entry is enabled automatically when saved (so the Status field is only visible when editing an entry). You can also disable or delete entries by changing this field’s value.

NOTE

For larger networks that include multiple Access Points, you may prefer to maintain this list on a centralized location using the MAC Access Control Via RADIUS Authentication.

![MAC Access Configuration Screen](image)
Wireless

Each SSID/VLAN can have its own Security Profile that defines its security mode, authentication mechanism, and encryption, so that customers can have multiple types of clients (non-WEP, WEP, 802.1x, WPA, 802.11i (WPA2)) on the same system, but separated per VLAN. Refer to the Security Profile section for more information. These parameters are configurable on the Wireless sub-tab.

Adding or Modifying an SSID/VLAN with VLAN Protocol Disabled

1. Click **SSID/VLAN/Security > Wireless**.

 This tab allows you to select the index of the SSID/VLAN to be added or edited. It also allows you to configure the RADIUS Authentication Status, the MAC ACL Status, the Security Profile for the VLAN, the RADIUS Server Profiles, and gives you the option to enable or disable RADIUS accounting and SSID authorization in the VLAN.

2. Scroll down to the SSID and VLAN table, and select the VLAN/SSID and click **Add** to configure additional SSIDs, VLANs, and their associated security profiles and RADIUS server profiles, or click **Edit** to modify an existing VLAN/SSID.

![SSID and VLAN Data Table](image)

Figure 4-40 SSID and VLAN Table

The **Add Entries** or **Edit Entries** screen appears. See Figure 4-41 and Figure 4-42 on page 101.

![SSID and VLAN Add Entries (VLAN Protocol Disabled)](image)

Figure 4-41 SSID/VLAN Add Entries (VLAN Protocol Disabled)
3. Enter a unique **Network Name** (SSID) between 1 and 32 characters. This parameter is mandatory.

NOTE
Do not use quotation marks (single or double) in the Network Name; this will cause the AP to misinterpret the name.

4. Enter a unique **VLAN ID**. This parameter is mandatory.
 - You must specify a unique VLAN ID for each SSID on the interface. A VLAN ID is a number from -1 to 4094. A value of -1 means that an entry is “untagged.”
 - You can set the VLAN ID to “-1” or “untagged” if you do not want clients that are using a specific SSID to be members of a VLAN workgroup. Only one “untagged” VLAN ID is allowed per interface.
 - The VLAN ID must match an ID used by your network; contact your network administrator if you need assistance defining the VLAN IDs.

5. If editing an entry, enable or disable the VLAN using the **Status** drop-down menu. If adding an entry, this field will not appear.

6. Specify a **QoS profile**. Refer to the [QoS Policies](#) section for more information.

7. Click OK to return to the **Wireless Security Configuration** screen. Refer to Figure 4-43.
8. Enable or disable RADIUS accounting on the VLAN/SSID under the **Accounting Status** drop-down menu.
9. Enable or disable RADIUS MAC authentication status on the VLAN/SSID under the **RADIUS Authentication Status** drop-down menu.
10. Enable or disable MAC Access Control List status on the VLAN/SSID under the **MAC ACL Status** drop-down menu.
11. Enter the **Rekeying Interval** in seconds. The default interval is 900 seconds.
12. Enter the **Security Profile** used by the VLAN in the Security Profile field. Refer to the **Security Profile** section for more information.

NOTE

If you have two or more SSIDs per interface using a security Profile with a security mode of Non Secure, be aware that security being applied in the VLAN is not being applied in the wireless network.
13. Define the **RADIUS Server Profile Configuration** for the VLAN/SSID:
 - RADIUS MAC Authentication Profile
 - RADIUS EAP Authentication Profile
 - RADIUS Accounting Profile

 If 802.1x, WPA, or 802.11i (WPA2) security mode is used, the RADIUS EAP Authentication Profile must have a value.
 A RADIUS Server Profile for authentication for each VLAN shall be configured as part of the configuration options for that VLAN. RADIUS profiles are independent of VLANs. The user can define any profile to be the default and associate all VLANs to that profile. Four profiles are created by default, "MAC Authentication", "EAP Authentication", "Accounting", and "Management".

14. Reboot the AP.

Adding or Modifying an SSID/VLAN with VLAN Protocol Enabled

1. Click **SSID/VLAN/Security > Wireless**.
 This tab allows you to select the index of the SSID/VLAN to be added or edited. It also allows you to configure the RADIUS Authentication Status, the MAC ACL Status, the Security Profile for the VLAN, the RADIUS Server Profiles, and gives you the option to enable or disable RADIUS accounting and SSID authorization in the VLAN.

2. Select the **Enable Security Per SSID** option. The screen will update to the following:

![SSID/VLAN Configuration (VLAN Protocol Enabled)](image)

 3. Click **Add** to configure additional SSIDs, VLANs, and their associated security profiles and RADIUS server profiles, or click **Edit** to modify an existing VLAN/SSID.
The Add Entries or Edit Entries screen appears. See Figure 4-45 below and Figure 4-46 on page 105.

SSID, VLAN, and Security Table - Wireless A - Add Entries.

This page is used to configure additional SSIDs, VLANs, and their associated security profiles and RADIUS server profiles. Each table entry requires a unique SSID, VLAN ID, and a valid security profile.

Security Profiles are used to configure the allowed security modes. If RADIUS MAC, 802.1x, WPA or RADIUS accounting is enabled in the SSID's security profile then the respective RADIUS server profiles should be configured and assigned to this SSID.

Note: Changes to these parameters require access point reboot in order to take effect.

Figure 4-45 SSID/VLAN Add Entries (VLAN Protocol Enabled)
Figure 4-46 SSID/VLAN Edit Entries (VLAN Protocol Enabled)

4. Enter a unique **Network Name** (SSID) between 1 and 32 characters. This parameter is mandatory.

 NOTE

 Do not use quotation marks (single or double) in the Network Name; this will cause the AP to misinterpret the name.

5. Enter a unique **VLAN ID**. This parameter is mandatory.
 - You must specify a unique VLAN ID for each SSID on the interface. A VLAN ID is a number from -1 to 4094. A value of -1 means that an entry is "untagged."
 - You can set the VLAN ID to "-1" or "untagged" if you do not want clients that are using a specific SSID to be members of a VLAN workgroup. Only one "untagged" VLAN ID is allowed per interface.
 - The VLAN ID must match an ID used by your network; contact your network administrator if you need assistance defining the VLAN IDs.

6. If editing an entry, enable or disable the VLAN using the **VLAN Status** drop-down menu. If adding, this drop-down menu will not appear.

7. Enable or disable the **SSID Authorization** status from the drop-down menu. SSID Authorization is the RADIUS based authorization of the SSID for a particular client. The authorized SSIDs are sent as the tunnel attributes.

8. Enable or disable RADIUS accounting on the VLAN/SSID under the **Accounting Status** drop-down menu.

9. Enable or disable RADIUS MAC authentication status on the VLAN/SSID under the **RADIUS Authentication Status** drop-down menu.

10. Enable or disable MAC Access Control List status on the VLAN/SSID under the **MAC ACL Status** drop-down menu.

11. Enter the **Rekeying Interval** in seconds. The default interval is 900 seconds.

12. Enter the Security Profile used by the VLAN in the **Security Profile** field.
NOTE
If you have two or more SSIDs per interface using a security Profile with a security mode of Non Secure, be aware that security being applied in the VLAN is not being applied in the wireless network.

13. Define the RADIUS Server Profile Configuration for the VLAN/SSID:
 • RADIUS MAC Authentication Profile
 • RADIUS EAP Authentication Profile
 • RADIUS Accounting Profile
If 802.1x, WPA, or 802.11i (WPA2) security mode is used, the RADIUS EAP Authentication Profile must have a value.
A RADIUS Server Profile for authentication for each VLAN shall be configured as part of the configuration options for that VLAN. RADIUS profiles are independent of VLANs. The user can define any profile to be the default and associate all VLANs to that profile. Four profiles are created by default, “MAC Authentication”, “EAP Authentication”, Accounting”, and “Management”.

15. Reboot the AP.

Broadcast SSID and Closed System
Broadcast SSID allows the broadcast of a single SSID when the AP is configured for multiple SSIDs. Broadcast SSID may only be enabled for a single SSID. This object can only be configured using the CLI and SNMP using a MIB browser or network management application.
Closed System manages the way probe requests are handled. If enabled, the AP will respond to probe requests with an SSID only if the client has specified the SSID in the probe request. If the client sends a probe request with a null or “ANY” SSID, the AP will respond with a null SSID. If disabled, the AP will respond with each configured SSID, whether or not an SSID has been specified in the probe request. This option is disabled by default.
Monitoring the AirSPEED AP541

- **Version**: Provides version information for the Access Point's system components.
- **ICMP**: Displays statistics for Internet Control Message Protocol packets sent and received by the AP.
- **IP ARP Table**: Displays the AP's IP Address Resolution table.
- **Learn Table**: Displays the list of nodes that the AP has learned are on the network.
- **IAPP**: Provides statistics for the Inter-Access Point Protocol messages sent and received by the AP.
- **RADIUS**: Provides statistics for the configured RADIUS server(s).
- **Interfaces**: Displays the Access Point's interface statistics (Wireless and Ethernet).
- **Station Statistics**: Displays statistics for stations and Wireless Distribution System links.

To monitor the AP using the HTTP/HTTPS interface, you must first log in to a web browser. See [Logging into the HTTP Interface](#) for instructions.

You may also monitor the AP using the command line interface. Refer to [Using the Command Line Interface (CLI)](#) for more information.

To monitor the AP via HTTP/HTTPS:

1. Click the **Monitor** button located on the left-hand side of the screen. The main **Monitor** screen will be displayed.

 ![Figure 5-1 Monitor Main Screen](image)

 Figure 5-1 Monitor Main Screen

2. Click the tab that corresponds to the statistics you want to review. For example, click **Learn Table** to see the list of nodes that the AP has discovered on the network.

3. If applicable, click the **Refresh** button to update the statistics.

Each **Monitor** tab is described in the remainder of this chapter.
Version

From the HTTP interface, click the Monitor button and select the Version tab. The list displayed provides you with information that may be pertinent when calling Technical Support. With this information, your Technical Support representative can verify compatibility issues and make sure the latest software are loaded. This screen displays the following information for each Access Point component:

- **Serial Number:** The component’s serial number, if applicable.
- **Component Name ID:** The AP identifies a system component based on its ID. Each component has a unique identifier.
- **Variant:** Several variants may exist of the same component (for example, a hardware component may have two variants, one with more memory than the other).
- **Version:** Specifies the component’s version or build number. The Software Image version is the most useful information on this screen for the typical end use.

![Version Information Table]

Figure 5-2 Version Information
ICMP
This tab provides statistical information for both received and transmitted messages directed to the AP. Not all ICMP traffic on the network is counted in the ICMP (Internet Control Message Protocol) statistics.

Figure 5-3 ICMP Monitoring

IP ARP Table
This tab provides information based on the Address Resolution Protocol (ARP), which relates MAC Address and IP Addresses.

Figure 5-4 IP ARP Table
Learn Table
This tab displays information relating to network bridging. It reports the MAC address for each node that the device has learned is on the network and the interface on which the node was detected. There can be up to 10,000 entries in the Learn Table.

![Learn Table](image)

Figure 5-5 Learn Table

IAPP
This tab displays statistics relating to client handovers and communications between AirSPEED Access Points.

![IAPP](image)

Figure 5-6 IAPP
RADIUS

This tab provides RADIUS authentication, EAP/802.1x authentication, and accounting information for both the Primary and Backup RADIUS servers for each RADIUS Server Profile.

NOTE

Separate RADIUS servers can be configured for each RADIUS Server Profile.

Select the RADIUS Server Profile to view statistics on from the Select Server Profile drop-down menu.

Figure 5-7 RADIUS Monitoring
Interfaces

This tab displays statistics for the Ethernet and wireless interfaces. The Operational Status can be up, down, or testing.

<table>
<thead>
<tr>
<th>Ethernet</th>
<th>ethernet-synamed</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>#</td>
<td>0</td>
</tr>
<tr>
<td>MIB Specific Definition</td>
<td>#</td>
<td>0</td>
</tr>
<tr>
<td>Ethernet Chipset</td>
<td>#802.11b</td>
<td></td>
</tr>
<tr>
<td>Physical Address</td>
<td>00:20:A8:52:17:59</td>
<td></td>
</tr>
<tr>
<td>Last Change</td>
<td>1055500000</td>
<td></td>
</tr>
<tr>
<td>Operational Status</td>
<td>Up</td>
<td></td>
</tr>
<tr>
<td>Admin Status</td>
<td>Up</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>1000000000</td>
<td></td>
</tr>
<tr>
<td>Maximum Packet Size</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>In Octets (Bytes)</td>
<td>69333004</td>
<td></td>
</tr>
<tr>
<td>In Unicast Packets</td>
<td>5290</td>
<td></td>
</tr>
<tr>
<td>In Non-Unicast Packets</td>
<td>59669</td>
<td></td>
</tr>
<tr>
<td>In Discards</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>In Errors</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Unknown Protocols</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Out Octets (Bytes)</td>
<td>5411409</td>
<td></td>
</tr>
<tr>
<td>Out Unicast Packets</td>
<td>3838</td>
<td></td>
</tr>
<tr>
<td>Out Non-Unicast Packets</td>
<td>5421</td>
<td></td>
</tr>
<tr>
<td>Out Discards</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Out Errors</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Output Queue Length</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Alignment Error</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>FCS Errors</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Single Collision Frames</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Multiple Collision Frames</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SGE Test Errors</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Deferred Transmissions</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Late Collisions</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Excessive Collisions</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Internal MAC Transmit Errors</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5-8 Wireless Interface Monitoring
Station Statistics

This tab displays information on wireless clients attached to the AP and on Wireless Distribution System links.

Enabling and Viewing Station Statistics

To enable the monitoring of Stations Statistics, perform the following procedure:

1. Click on the **Monitor** tab on the left on the web page.
2. Click on the **Station Statistics** tab on the **Monitor** screen.
3. Enable the Monitoring Station Statistics feature (Station Statistics are disabled by default) by checking **Enable Monitoring Station Statistics** and click **OK**.

You do not need to reboot the AP for the changes to take effect. If clients are connected to the device or WDS links are configured for the device, the statistics will now be shown on the screen.

Refreshing Station Statistics

Click on the **Refresh** button in the browser window to view the latest statistics. If any new clients associate to the AP, you can see the statistics of the new clients after you click the refresh button.

Figure 5-9 Station Statistics

Description of Station Statistics

The following stations statistics are displayed:

- **MAC Address**: The MAC address of the wireless client for which the statistics are gathered. For WDS links, this is the partner MAC address of the link.
- **IP Address**: The IP address of the associated wireless station for which the Statistics are gathered. (0.0.0.0 for WDS links)
- **Interface**: The interface number on which the client is connected with the AP. For WDS links this is the interface on which the link is configured.
- **Type**: The station type of wireless client (STA or WDS).
- **Protocol**: The MAC protocol for this wireless client (or WDS link partner). The possible values are 802.11a, 802.11b, 802.11g
• **SNR** (Signal-to-Noise Ratio): The Signal /Noise Level measured at the AP when frames are received from the associated wireless station (or WDS link partner)

• **TLFR** (Time since Last Frame Received): The time elapsed since the last frame from the associated wireless station (or WDS link partner) was received.

• **Number of Clients**: The number of stations and WDS links monitored.

The following stations statistics are not displayed in the Graphical User Interface, but can be viewed from a MIB browser:

• **Octets Received**: The number of octets received from the associated wireless station (or WDS link partner) by the AP.

• **Unicast Frames Received**: The number of Unicast frames received from the associated wireless station (or WDS link partner) by the AP.

• **Non-Unicast Frames Received**: The number of Non-Unicast frames received (i.e. broadcast or multicast) from the associated wireless station (or WDS link partner) by the AP.

• **Octets Transmitted**: The number of octets sent to the associated wireless station (or WDS link partner) from the AP.

• **Unicast Frames Transmitted**: The number of Unicast frames transmitted to the associated wireless station (or WDS link partner) from the AP.
Performing Commands

- Introduction to File Transfer via TFTP or HTTP: Describes the available file transfer methods.
- Update AP: Download files to the AP using TFTP or HTTP.
- Retrieve File: Upload files from the AP using TFTP or HTTP.
- Reboot: Reboot the AP in the specified number of seconds.
- Reset: Reset all of the Access Point's configuration settings to factory defaults.
- Help Link: Configure the location where the AP Help files can be found.

To perform commands using the HTTP/HTTPS interface, you must first log in to a web browser. See Logging into the HTTP Interface for instructions.

You may also perform commands using the command line interface. Refer to Using the Command Line Interface (CLI) for more information.

To perform commands via HTTP/HTTPS:

1. Click the Commands button located on the left-hand side of the screen. The main Commands screen will be displayed.

![Figure 6-1 Commands Main Screen](image)

2. Click the tab that corresponds to the command you want to issue. For example, click Reboot to restart the unit.

Following a brief introduction to TFTP and HTTP file transfer, each Commands tab is described in the remainder of this chapter.
Introduction to File Transfer via TFTP or HTTP

There are two methods of transferring files to or from the AP: TFTP or HTTP (or HTTPS if enabled):
- Downloading files (Configuration, AP Image, Bootloader, Private Key, and Certificate, CLI) to the AP using one of these two methods is called “Updating the AP.”
- Uploading files (Configuration, CLI) from the AP is called “retrieving files.”

TFTP File Transfer Guidelines

A TFTP server must be running and configured to point to the directory containing the file.
If you do not have a TFTP server installed on your system, install the TFTP server from the AirSPEED CD-ROM.

HTTP File Transfer Guidelines

HTTP file transfer can be performed either with or without SSL enabled.
HTTP file transfers with SSL require enabling Secure Management and Secure Socket Layer. HTTP transfers that use SSL may take additional time.

NOTE
SSL requires Internet Explorer version 6, 128 bit encryption, Service Pack 1, and patch Q323308.

Image Error Checking during File Transfer

The Access Point performs checks to verify that an image downloaded through HTTP or TFTP is valid. The following checks are performed on the downloaded image:
- Zero Image size
- Large image size
- Non VxWorks image
- AP image
- Digital signature verification

If any of the above checks fail on the downloaded image, the Access Point deletes the downloaded image and retains the old image. Otherwise, if all checks pass successfully, the AP deletes the old image and retains the downloaded image.

These checks are to ensure that the AP does not enter an invalid image state. The storage of the two images is only temporary to ensure the proper verification; the two images will not be stored in the AP permanently.

Image error checking functions automatically in the background. No user configuration is required.
Update AP

Update AP via TFTP

Use the Update AP via TFTP tab to download Configuration, AP Image, Bootloader files, and Certificate and Private Key files to the AP. A TFTP server must be running and configured to point to the directory containing the file.

Figure 6-2 Update AP via TFTP Command Screen

If you do not have a TFTP server installed on your system, install the TFTP server from the AirSPEED CD-ROM. You can either install the TFTP server from the CD-ROM Wizard or run OEM-TFTP-Server.exe found in the CD-ROM’s Xtras/SolarWinds sub-directory.

The Update AP via TFTP tab shows version information and allows you to enter TFTP information as described below.

- **Server IP Address**: Enter the TFTP server IP Address.
 - Double-click the TFTP server icon on your desktop and locate the IP address assigned to the TFTP server. Note: This is the IP address that will be used to point the Access Point to the AP Image file.

- **File Name**: Enter the name of the file to be downloaded (including the file extension).
 - Copy the updated AP Image file to the TFTP server’s root folder. The default AP Image is located at C:/Program Files/AirSPEED/AP541/.

- **File Type**: Select the proper file type. Choices include:
 - **Config**: for configuration information, such as System Name, Contact Name, and so on.
 - **Image**: for the AP Image (executable program).
 - **UpgradeBSPBL**: for the Bootloader software.
 - **SSL Certificate**: the digital certificate for authentication in SSL communications.
 - **SSL Private Key**: the private key for encryption in SSL communications.
 - **SSH Public Key**: the public key in SSH communications. Refer to Secure Shell (SSH) for more information.
 - **SSH Private Key**: the private key in SSH communications. Refer to Secure Shell (SSH) for more information.
 - **CLI Batch File**: a CLI Batch file that contains CLI commands to configure the AP. This file will be executed by the AP immediately after being uploaded. Refer to CLI Batch File for more information.

- **File Operation**: Select either Update AP or Update AP & Reboot. You should reboot the AP after downloading files.
Performing Commands SYSTIMAX® AirSPEED™ AP541 User Guide

Update AP via HTTP

Use the Update AP via HTTP tab to download Configuration, AP Image, Bootloader files, and Certificate and Private Key files to the AP.

Once on the Update AP screen, click on the via HTTP tab.

![Update AP via HTTP Command Screen](image)

The Update AP via HTTP tab shows version information and allows you to enter HTTP information as described below.

1. Select the File Type that needs to be updated from the drop-down box. Choices include:
 - **Image**: for the AP Image (executable program).
 - **Config**: for configuration information, such as System Name, Contact Name, and so on.
 - **SSL Certificate**: the digital certificate for authentication in SSL communications.
 - **SSL Private Key**: the private key for encryption in SSL communications.
 - **UpgradeBSPBL**: for the Bootloader software.
 - **CLI Batch File**: a CLI Batch file that contains CLI commands to configure the AP. This file will be executed by the AP immediately after being uploaded. Refer to CLI Batch File for more information.
 - **SSH Public Key**: the public key in SSH communications. Refer to Secure Shell (SSH) for more information.
 - **SSH Private Key**: the private key in SSH communications. Refer to Secure Shell (SSH) for more information.

2. Use the **Browse** button or manually type in the name of the file to be downloaded (including the file extension) in the File Name field. If typing the file name, you must include the full path and the file extension in the file name text box.

3. To initiate the HTTP Update operation, click the Update AP button.

 A warning message is displayed that advises the user that a reboot of the device will be required for changes to take effect.

![Warning Message](image)

4. Click OK to continue with the operation or Cancel to abort the operation.

 NOTE

 An HTTP file transfer using SSL may take extra time.
If the operation completes successfully the following screen appears.

Figure 6-5 Update AP Successful Message

If the operation does not complete successfully the following screen appears, and the reason for the failure is displayed.

Figure 6-6 Update AP Unsuccessful Message
Retrieve File

Retrieve File via TFTP

Use the Retrieve File via TFTP tab to upload files from the AP to the TFTP server. The TFTP server must be running and configured to point to the directory to which you want to copy the uploaded file. We suggest you assign the file a meaningful name, which may include version or location information.

If you don’t have a TFTP server installed on your system, install the TFTP server from the AirSPEED CD-ROM. You can either install the TFTP server from the CD-ROM Wizard or run OEM-TFTP-Server.exe found in the CD-ROM’s Xtras/SolarWinds sub-directory.

The Retrieve AP via TFTP tab shows version information and allows you to enter TFTP information as described below.

- **Server IP Address**: Enter the TFTP server IP Address.
 - Double-click the TFTP server icon on your desktop and locate the IP address assigned to the TFTP server.
- **File Name**: Enter the name of the file to be uploaded.
- **File Type**: Select the type of file to be uploaded: Config file, CLI Batch File, or CLI Batch (Error) Log.

Use the following procedure to retrieve a file from an AP to a TFTP server:

1. If retrieving a Config file, configure all the required parameters in their respective tabs. Reboot the device.
2. Retrieve and store the file. Click the **Retrieve File** button to initiate the upload of the file from the AP to the TFTP server.
3. If you retrieved a Configuration file, update the file as necessary.
4. If you retrieved a CLI Batch File or CLI Batch Log, you can examine the file using a standard text editor. For more information on CLI Batch Files, refer to **CLI Batch File**.

![Retrieve File via TFTP Command Screen](image-url)
Retrieve File via HTTP

Use the **Retrieve File via HTTP** tab to retrieve configuration files, CLI Batch Files, or CLI Batch Logs from the AP. Select the type of file (Config, CLI Batch File, or CLI Batch Log) from the **File Type** drop-down menu. For more information on CLI Batch Files and CLI Batch Logs refer to **CLI Batch File**. Click on the **Retrieve File** button to initiate the operation.

![Retrieve File via HTTP Command Screen](image)

Figure 6-8 Retrieve File via HTTP Command Screen

A confirmation message gets displayed that asks if the user wants to proceed with retrieving the file. Click **OK** to continue with the operation or **Cancel** to abort the operation.

![Retrieve File Confirmation Dialog](image)

Figure 6-9 Retrieve File Confirmation Dialog

On clicking the **Save** button the following Save As window displays, where the user is prompted to choose the filename and location where the file is to be downloaded. Select an appropriate filename and location and click **OK**.

![File Download Dialog Box](image)

Figure 6-10 File Download Dialog Box
Reboot

Use the Reboot tab to save configuration changes (if any) and reset the AP. Entering a value of 0 (zero) seconds causes an immediate reboot. Note that Reset, described below, does not save configuration changes.

⚠️ CAUTION

Rebooting the AP will cause all users who are currently connected to lose their connection to the network until the AP has completed the restart process and resumed operation.

![Reboot Command Screen](image)

Figure 6-11 Reboot Command Screen
Reset

Use the **Reset** tab to restore the AP to factory default conditions. The AP may also be reset from the **RESET** button located on the side of the unit. Since this will reset the Access Point's current IP address, a new IP address must be assigned. Refer to Recovery Procedures for more information.

![Pressing the Reset Button](image)

CAUTION

Resetting the AP to its factory default configuration will permanently overwrite all changes that have been made to the unit. The AP will reboot automatically after this command has been issued.

![Reset to Factory Defaults Command Screen](image)
Help Link

To open Help, click the Help button on any display screen.
During initialization, the AP on-line help files are downloaded to the default location: C:/Program Files/AirSPEED/AP541/HTML/.

NOTE

Use the forward slash character (/) rather than the backslash character (\) when configuring the Help Link location.

NOTE

Add the AP’s management IP address into the Internet Explorer list of Trusted Sites.
If you want to place these files on a shared drive, copy the Help Folder to the new location, and then specify the new path in the Help Link box.

![Help Link Configuration Screen](image)

Figure 6-14 Help Link Configuration Screen
Troubleshooting the AirSPEED AP541

- Troubleshooting Concepts
- Symptoms and Solutions
- Recovery Procedures
- Related Applications

NOTE
This section helps you locate problems related to the AP device setup. For details about RADIUS, TFTP, serial communication programs (such as HyperTerminal), Telnet applications, or web browsers, please refer to the documentation that came with the application for assistance.

Troubleshooting Concepts
The following list identifies important troubleshooting concepts and topics. The most common initialization and installation problems relate to IP addressing. For example, you must have valid IP addresses for both the AP and the management computer to access the unit’s HTTP interface.

- **IP Address management is fundamental.**
- **Factory default units are set for “Dynamic” (DHCP) IP Address assignment.** The default IP address for the AP is 169.254.128.132 if your network does not have a DHCP server. If you connect the AP to a network with an active DHCP server, then use ScanTool to locate the IP address of your unit. If a DHCP server is not active on your subnet, then use ScanTool to assign a static IP address to the unit.
- **The Trivial File Transfer Protocol (TFTP) provides a means to download and upload files.** These files include the AP Image (executable program) and configuration files.
- **If the AP password is lost or forgotten, you will need to reset to default values.** The Reset to Factory Default Procedure resets configuration, but does not change the current AP Image.
- **The AP Supports a Command Line Interface (CLI).** If you are having trouble locating your AP on the network, connect to the unit directly using the serial interface and refer to Using the Command Line Interface (CLI) for CLI command syntax and parameter names.
- **ScanTool does not work over routers.** You must be connected to the same subnet/physical LAN segment to use ScanTool. Note that ScanTool also works over the wireless interface; you can run it on a wireless client connected to the target AP or an AP connected to the same LAN segment/subnet.
- **If all else fails...** Use the Forced Reload Procedure to erase the current AP Image and then download a new image. Once the new image is loaded, use the Reset to Factory Default Procedure to set the unit to factory default values and reconfigure the unit.
Symptoms and Solutions

Connectivity Issues
Connectivity issues include any problem that prevents you from powering up or connecting to the AP.

AP Unit Will Not Boot - No LED Activity
1. Make sure your power source is operating.
2. Make sure all cables are connected to the AP correctly.

Serial Link Does Not Work
1. Make sure you are using a standard, straight-through, 9-pin serial cable.
2. Double-check the physical network connections.
3. Make sure your PC terminal program (such as HyperTerminal) is active and configured to the following values:
 - Com Port: (COM1, COM2, etc. depending on your computer);
 - Baud rate: 9600; Data bits: 8; Stop bits: 1; Flow Control: None; Parity: None;
 - Line Feeds with Carriage Returns
 (In HyperTerminal select: File > Properties > Settings > ASCII Setup > Send Line Ends with Line Feeds)

Ethernet Link Does Not Work
1. Double-check the physical network connections. Use a known-good unit to make sure the network connection is present. Once you have the AP IP address, you can use the “Ping” command over Ethernet to test the IP Address. If the AP responds to the Ping, then the Ethernet Interface is working properly.
2. By default, the Access Point will attempt to automatically detect the Ethernet settings. However, if you are having problems with the Ethernet link, manually configure the Access Point’s Ethernet settings. For example, if your switch operates at 100 Mbits/s/Full Duplex, manually configure the Access Point to use these settings (see Ethernet). If you cannot access the unit over Ethernet, then use the CLI interface over the serial port to configure the Ethernet port (see Using the Command Line Interface (CLI) and Set Ethernet Speed and Transmission Mode).
3. Perform network infrastructure troubleshooting (check switches, routers, etc.).

Basic Software Setup and Configuration Problems

Lost AP, Telnet, or SNMP Password
1. Perform the Reset to Factory Default Procedure in this guide. This procedure resets system and network parameters, but does not affect the AP Image.
 - The default AP HTTP password is “public”. The default Telnet password and the default SNMP password are also “public”.

Client Computer Cannot Connect
1. Client computers should have the same Network Name and security settings as the AP.
2. Network Names should be allocated and maintained by the Network Administrator.
3. Refer to the documentation that came with your client card for additional troubleshooting suggestions.

AP Has Incorrect IP Address
1. Default IP Address Assignment mode is dynamic (DHCP). If you do not have a DHCP server on your network, the default IP Address is 169.254.128.132. If you have more than one uninitialized AP connected to the network, they will all have the same default IP address and you will not be able to communicate with them (due to an IP address conflict). In this case, assign each AP a static IP address via the serial cable or turn off all units but one and change the IP address using ScanTool one at a time.
2. The AP only contacts a DHCP server during boot-up. If your network’s DHCP server is not available while the AP is booting, the device will retain the last IP Address it had. Reboot the AP once your DHCP server is on-line again or use the ScanTool to find the Access Point’s current IP address.

3. To find the unit’s current IP address if using DHCP, open the IP Client Table in the DHCP Server and match the Access Point’s IP address to its MAC address (found on the product label). Alternatively, use ScanTool to identify an Access Point’s current IP address.

4. Once you have the current IP address, use the HTTP or CLI Interface to change the unit’s IP settings, if necessary.

5. If you use static IP Address assignments, and cannot access the unit over Ethernet, use the Initializing the IP Address using CLI procedure. Once the IP Address is set, you can use the Ethernet Interface to complete configuration.

6. Perform the Reset to Factory Default Procedure in this guide. This will reset the unit to “DHCP” mode. If there is a DHCP Server on the network, the DHCP Server will assign an IP Address to the AP.

HTTP (browser) or Telnet Interface Does Not Work

1. Make sure you are using a compatible browser:
 - Microsoft Internet Explorer 6 with Service Pack 1 or later
 - Netscape 7.1 or later

2. Make sure you have the proper IP address. Enter your Access Point’s IP Address in the browser address bar, similar to this example:

 http://192.168.1.100

 When the Enter Network Password window appears, leave the User Name field empty and enter the HTTP password in the Password field. The default HTTP password is “public”.

3. Use the CLI over the serial port to check the IP Access Table, which can be restricting access to Telnet and HTTP.

HTML Help Files Do Not Appear

1. Verify that the HTML Help files are installed in the default directory:

 C:/Program Files/AirSPEED/AP541/HTML/

2. If the Help files are not located in this folder, contact your network administrator to find out where the Help files are located on your server.

3. Perform the following steps to verify the location or to enter the pathname for the Help files:
 a. Click the Commands button in the HTTP interface.
 b. Select the Help tab located at the top of the screen.
 c. Enter the pathname where the Help files are located in the Help Link box.
 d. Click OK when finished.

Telnet CLI Does Not Work

1. Make sure you have the proper IP Address. Enter your AP IP address in the Telnet connection dialog, from a DOS prompt, type:

 C:\> telnet <AP IP Address>

2. Confirm that your computer has an IP address in the same IP subnet as your Access Point.

3. Use the CLI over the serial port to check the IP Access Table, which can be restricting access to Telnet and HTTP.

TFTP Server Does Not Work

1. Make sure the TFTP Server has been started.

2. Verify the IP address of the TFTP Server. The server may be local or remote, so long as it has a valid IP address.

3. Configure the TFTP Server to “point” to the folder containing the file to be downloaded (or to the folder in which the file is to be uploaded).

4. Verify that you have entered the proper AP Image file name (including the file extension) and directory path.

5. If you have a problem uploading a file, verify that the TFTP server is configured to allow uploads (typically the default setting is to allow only downloads).
Client Connection Problems

Client Software Finds No Connection
1. Make sure you have configured your client software with the proper Network Name and Security settings. Network Names and WEP Keys are typically allocated and maintained by your network administrator.

Client PC Card Does Not Work
1. Make sure you are using the latest PC Card driver software.
2. Download and install the latest client software from your PC Card provider.

Intermittent Loss of Connection
1. Make sure you are within range of an active AP.
2. You can check the signal strength using the signal strength gauge on your client software.

Client Does Not Receive an IP Address - Cannot Connect to Internet
1. If the AP is configured as a DHCP server, open the Web-browser Interface and select the Configure button and then the Network tab to make sure the proper DHCP settings are being used.
2. If you are not using the DHCP server feature on the AP, then make sure that your local DHCP server is accessible from the Access Point’s subnet.
3. From the client computer, use the “ping” network command to test the connection with the AP. If the AP responds, but you still cannot connect to the Internet, there may be a physical network configuration problem (contact your network support staff).
4. If using Power over Ethernet, make sure you are not using a crossover Ethernet cable between the AP and the midspan POE device.

VLAN Operation Issues

Verifying Proper Operation of the VLAN Feature
The correct VLAN configuration can be verified by "pinging" both wired and wireless hosts from both sides of the AP device and the network switch. Traffic can be "sniffed" on both the wired (Ethernet) and wireless (WDS) backbones (if configured). Bridge frames generated by wireless clients and viewed on one of the backbones should contain IEEE 802.1Q compliant VLAN headers or tags. The VLAN ID in the headers should correspond to one of the VLAN User IDs configured for the AP.

NOTE
The AirSPEED AP541 supports 16 VLAN/SSID pairs, each with a configured security mode.

VLAN Workgroups
The correct VLAN assignment can be verified by pinging the AP to ensure connectivity, by pinging the switch to ensure VLAN properties, and by pinging hosts past the switch to confirm the switch is functional. Ultimately, traffic can be “sniffed” on the Ethernet or WDS interfaces (if configured) using third-party packages. Most problems can be avoided by ensuring that 802.1Q compliant VLAN tags containing the proper VLAN ID have been inserted in the bridged frames. The VLAN ID in the header should correspond to the user’s assigned network name.

What if network traffic is being directed to a nonexistent host?
– All sessions are disconnected, traffic is lost, and a manual override is necessary
– Workaround: you can configure the switch to mimic the nonexistent host
I have just configured the Management ID and now I can't manage the AP?

– Check to ensure your password is correct. If your password is incorrect or all inbound packets do NOT have the correct tag, then a manual override is necessary.

⚠️ CAUTION

The manual override process disconnects all users and resets all values to factory defaults.

Power over Ethernet (PoE)

The AP Does Not Work

1. Verify that you are using a standard UTP minimum Category 5e/6 cable.
2. Try a different port on the same midspan PoE device (remember to move the input port accordingly) – if it works, there is probably a faulty port or a bad RJ45 port connection.
3. If possible, try to connect the AP to a different midspan PoE device.
4. Try using a different Ethernet cable – if it works, there is likely a faulty connection over the horizontal cable, or a bad RJ45 connection.
5. Verify that the midspan PoE device is plugged into an electrical outlet.
6. If the Ethernet link goes down, check the cable, cable type, switch, and midspan PoE device.

There Is No Data Link

1. Verify that the indicator for the port is “on.”
2. Verify that the midspan PoE device is connected to the Ethernet network with a data connection.
3. Verify that the Ethernet cable is a minimum Category 5e/6 UTP cable and is less than 100 meters (~325 feet) in length from the Ethernet source to the AP.
4. Try to connect a different device to the same port on the midspan PoE device – if it works and a link is established, there is likely a faulty data link in the AP.
5. Try to re-connect the AP to a different output port (remember to move the input port accordingly) – if it works, there is likely a faulty output or input port in the midspan PoE device or a bad RJ45 connection.

“Overload” Indications

1. Verify that you are not using a cross-over cable between the PoE output port and the AP.
2. Verify that there is no short over any of the twisted pair cables.
3. Move the device into a different output port – if it works, there is likely a faulty port or bad RJ45 connection.

Recovery Procedures

The most common installation problems relate to IP addressing. For example, without the TFTP server IP Address, you will not be able to download a new AP Image to the AP. IP Address management is fundamental. We suggest you create a chart to document and validate the IP addresses for your system.

If the password is lost or forgotten, you will need to reset the AP to default values. The Reset to Factory Default Procedure resets configuration settings, but does not change the current AP Image.

If the AP has a corrupted software image, follow the Forced Reload Procedure to erase the current AP Image and download a new image.
Troubleshooting the AirSPEED AP541

SYSTIMAX® AirSPEED™ AP541 User Guide

Reset to Factory Default Procedure

Use this procedure to reset the network configuration values, including the Access Point's IP address and subnet mask. The current AP Image is not deleted. Follow this procedure if you forget the Access Point's password:

1. Press and hold the RELOAD button for 10 seconds.

 NOTE
 You need to use a pin or the end of a paperclip to press the reboot button on the AP.

 Result: The AP reboots, and the factory default network values are restored.

2. If not using DHCP, use the ScanTool or use CLI over a serial connection to set the IP address, subnet mask, and other IP parameters. See Using the Command Line Interface (CLI) for CLI information.

Forced Reload Procedure

Use this procedure to erase the current AP Image and download a new AP Image. In some cases, specifically when a missing or corrupted AP Image prevents successful booting, you may need to use ScanTool or the Bootloader CLI to download a new executable AP Image.

NOTE
This does not delete the AP's configuration (in other words, the Forced Reload Procedure does not reset the device to factory defaults). If you need to force the AP to the factory default state after loading a new AP image, use the Reset to Factory Default Procedure above.

For this procedure, you will first erase the AP Image currently installed on the unit and then use either ScanTool or the Bootloader CLI (over the serial port) to set the IP address and download a new AP Image. Follow these steps:

1. While the unit is running, press the RESET button.

 NOTE
 You need to use a pin or the end of a paperclip to press the reboot button on the AP.

 Result: The AP reboots and the indicators begin to flash.

 CAUTION
 By completing Step 2, the firmware in the AP will be erased. You will need an Ethernet connection, a TFTP server, and a serial cable (if using the Bootloader CLI) to reload firmware.

2. Press and hold the RELOAD button for about 20 seconds until the POWER LED turns amber.

 Result: The AP deletes the current AP Image.

3. Follow one of the procedures below to load a new AP Image to the Access Point:

 - Download a New Image Using ScanTool
 - Download a New Image Using the Bootloader CLI
Download a New Image Using ScanTool

To download the AP Image, you will need an Ethernet connection to the computer on which the TFTP server resides and to a computer that is running ScanTool (this is either two separate computers connected to the same network or a single computer running both programs).

ScanTool detects if an Access Point does not have a valid software image installed. In this case, the TFTP Server and Image File Name parameters are enabled in the ScanTool's Change screen so you can download a new image to the unit. (These fields are grayed out if ScanTool does not detect a software image problem.)

Preparing to Download the AP Image

Before starting, you need to know the Access Point’s IP address, subnet mask, the TFTP Server IP Address, and the AP Image file name. Make sure the TFTP server is running and configured to point to the folder containing the image to be downloaded.

Download Procedure

Follow these steps to use ScanTool to download a software image to an Access Point with a missing image:

2. Copy the latest software updates to your TFTP server.
3. Launch ScanTool.
4. Highlight the entry for the AP you want to update and click Change.
5. Set IP Address Type to Static.

NOTE

You need to assign static IP information temporarily to the Access Point since its DHCP client functionality is not available when no image is installed on the device.

6. Enter an unused IP address that is valid on your network in the IP Address field. You may need to contact your network administrator to get this address.
7. Enter the network’s Subnet Mask in the field provided.
8. Enter the network’s Gateway IP Address, if necessary. You may need to contact your network administrator to get this address. You should only need to enter the default gateway address (169.254.128.133) if the Access Point and the TFTP server are separated by a router.
9. Enter the IP address of your TFTP server in the field provided.
10. Enter the Image File Name (including the file extension). Enter the full directory path and file name. If the file is located in the default TFTP directory, you need enter only the file name.
11. Click OK.
 - Result: The Access Point will reboot and the download will begin automatically. You should see downloading activity begin after a few seconds within the TFTP server’s status screen.
12. Click OK when prompted that the device has been updated successfully to return to the Scan List screen.
13. Click Cancel to close the ScanTool.
14. When the download process is complete, configure the AP as described in Getting Started and Performing Advanced Configuration.
Download a New Image Using the Bootloader CLI

To download the AP Image, you will need an Ethernet connection to the computer on which the TFTP server resides. This can be any computer on the LAN or connected to the AP with a cross-over Ethernet cable.

You must also connect the AP to a computer with a standard serial cable and use a terminal client, such as HyperTerminal. From the terminal, enter CLI Commands to set the IP address and download an AP Image.

Preparing to Download the AP Image

Before starting, you need to know the Access Point’s IP address, subnet mask, the TFTP Server IP Address, and the AP Image file name. Make sure the TFTP server is running and configured to point to the folder containing the image to be downloaded.

Download Procedure

2. Copy the latest software updates to your TFTP server’s default directory.
3. Use a straight-through serial cable to connect the Access Point’s serial port to your computer’s serial port.
4. Open your terminal emulation program (like HyperTerminal) and set the following connection properties:
 - Com Port: <COM1, COM2, etc., depending on your computer>
 - Baud rate: 9600
 - Data Bits: 8
 - Stop bits: 1
 - Flow Control: None
 - Parity: None
5. Under File > Properties > Settings > ASCII Setup, enable the Send line ends with line feeds option.
 Result: HyperTerminal sends a line return at the end of each line of code.
6. Press the RESET button on the AP.
 Result: The terminal display shows Power On Self Tests (POST) activity. After approximately 30 seconds, a message indicates: Sending Traps to SNMP manager periodically. After this message appears, press the ENTER key repeatedly until the following prompt appears:

 [Device name]>
7. Enter only the following statements:

```
[Device name]> set ipaddrtype static
[Device name]> set ipaddr <Access Point IP Address>
[Device name]> set ipsubmask <IP Mask>
[Device name]> set tftpipaddr <TFTP Server IP Address>
[Device name]> set tftpfilename <AP Image File Name, including file extension>
[Device name]> set ipgw <Gateway IP Address>
[Device name]> show ip (to confirm your new settings)
[Device name]> show tftp (to confirm your new settings)
[Device name]> reboot 0
```

Example:

```
[Device name]> set ipaddrtype static
[Device name]> set ipaddr 10.0.0.12
[Device name]> set ipsubmask 255.255.255.0
[Device name]> set tftpipaddr 10.0.0.20
[Device name]> set tftpfilename MyImage.bin
[Device name]> set ipgw 10.0.0.30
[Device name]> show ip
[Device name]> show tftp
[Device name]> reboot 0
```

Result: The AP will reboot and then download the image file. You should see downloading activity begin after a few seconds within the TFTP server’s status screen.

8. When the download process is complete, configure the AP as described in Getting Started and Performing Advanced Configuration.

Setting IP Address using Serial Port

Use the following procedure to set an IP address over the serial port using the CLI. The network administrator typically provides the AP IP address.

Hardware and Software Requirements

- Standard straight-through serial data (RS-232) cable with a one male DB-9 connector and one female DB-9 connector. The AP comes with a female 9-pin serial port.
- ASCII Terminal software, such as HyperTerminal.

Attaching the Serial Port Cable

1. Connect one end of the serial cable to the AP and the other end to a serial port on your computer.
2. Power on the computer and AP, if necessary.

Initializing the IP Address using CLI

After installing the serial port cable, you may use the CLI to communicate with the AP. CLI supports most generic terminal emulation programs, such as HyperTerminal (which is included with the Windows operating systems). In addition, many web sites offer shareware or commercial terminal programs you can download. Once the IP address has been assigned, you can use the HTTP interface or the CLI over Telnet to complete configuration.
Follow these steps to assign the AP an IP address:

1. Open your terminal emulation program (like HyperTerminal) and set the following connection properties:
 - Com Port: <COM1, COM2, etc., depending on your computer>
 - Baud rate: 9600
 - Data Bits: 8
 - Stop bits: 1
 - Flow Control: None
 - Parity: None

2. Under File > Properties > Settings > ASCII Setup, enable the Send line ends with line feeds option.
 Result: HyperTerminal sends a line return at the end of each line of code.

3. Press the RESET button on the AP.
 Result: The terminal display shows Power On Self Tests (POST) activity, and then displays a CLI prompt, similar to the example below. This process may take up to 90 seconds.
 [Device name]> Please enter password:

4. Enter the CLI password (default is public).
 Result: The terminal displays a welcome message and then the CLI Prompt:
 [Device name]>

5. Enter show ip. Result: Network parameters appear:

6. Change the IP address and other network values using set and reboot CLI commands, similar to the example below (use your own IP address and subnet mask). Note that IP Address Type is set to Dynamic by default. If you have a DHCP server on your network, you should not need to manually configure the Access Point's IP address; the Access Point will obtain an IP address from the network's DHCP server during boot-up.
 Result: After each entry the CLI reminds you to reboot; however wait to reboot until all commands have been entered.
 [Device name] > set ipaddrtype static
 [Device name] > set ipaddr <IP Address>
 [Device name] > set ipsubmask <IP Subnet Mask>
 [Device name] > set ipgw <Default Gateway IP Address>
 [Device name] > show ip (to confirm your new settings)
 [Device name] > reboot 0

7. After the AP reboots, verify the new IP address by reconnecting to the CLI and enter a show ip command. Alternatively, you can ping the AP from a network computer to confirm that the new IP address has taken effect.

8. When the proper IP address is set, use the HTTP interface or CLI over Telnet to configure the rest of the unit's operating parameters.
Related Applications

RADIUS Authentication Server

If you enabled RADIUS Authentication on the AP, make sure that your network's RADIUS servers are operational. Otherwise, clients will not be able to log in. There are several reasons the authentication server services might be unavailable, here are two typical things to check:

• Make sure you have the proper RADIUS authentication server information setup configured in the AP. Check the RADIUS Authentication Server’s Shared Secret and Destination Port number (default is 1812; for RADIUS Accounting, the default is 1813).

• Make sure the RADIUS authentication server RAS setup matches the AP.

TFTP Server

The “Trivial File Transfer Protocol” (TFTP) server allows you to transfer files across a network. You can upload configuration files from the AP for backup or copying, and you can download configuration files or new software images. The TFTP software is located on the AirSPEED AP Installation CD-ROM.

If a TFTP server is not configured and running, you will not be able to download and upload images and configuration files to/from the AP. Remember that the TFTP server does not have to be local, so long as you have a valid TFTP IP address. Note that you do not need a TFTP server running unless you want to transfer files to or from the AP.

After the TFTP server is installed:

• Check to see that TFTP is configured to point to the directory containing the AP Image.

• Make sure you have the proper TFTP server IP Address, the proper AP Image file name, and that the TFTP server is connected.

• Make sure the TFTP server is configured to both send and receive, with no time-out.
Using the Command Line Interface (CLI)

This section describes the AP’s Command Line (CLI) Interface. CLI commands can be used to initialize, configure, and manage the Access Point.

- CLI commands may be entered in real time through a keyboard or submitted with CLI scripts.
- The CLI is available through both the Serial Port interface and over the Ethernet interface using Telnet.
- A CLI Batch file is a user-editable configuration file that provides a user-friendly way to change the AP configuration through a file upload. The CLI Batch file is an ASCII file that facilitates Auto Configuration because it does not require the user to access one of the AP’s management interfaces to make configuration changes.

NOTE

All CLI commands and parameters are case-sensitive.

- General Notes
- Command Line Interface (CLI) Variations
- CLI Command Types
- Using Tables & User Strings
- Configuring the AP using CLI commands
- Set Basic Configuration Parameters using CLI Commands
- Other Network Settings
- CLI Monitoring Parameters
- Parameter Tables
- CLI Batch File

General Notes

Prerequisite Skills and Knowledge

To use this document effectively, you should have a working knowledge of Local Area Networking (LAN) concepts, network access infrastructures, and client-server relationships. In addition, you should be familiar with software setup procedures for typical network operating systems and servers.

Notation Conventions

- Computer prompts are shown as constant width type. For example: [Device-Name]>
- Information that you input as shown is displayed in bold constant width type. For example: [Device name] > set ipaddr 10.0.0.12
- The names of keyboard keys, software buttons, and field names are displayed in bold type. For example: Click the Configure button.
- Screen names are displayed in bold italics. For example, the **System Status** screen.

Important Terminology

- Configuration Files - Database files containing the current Access Point configuration. Configuration items include the IP Address and other network-specific values. Configuration files may be downloaded to the Access Point or uploaded for backup or troubleshooting.
• Download vs. Upload - Downloads transfer files to the Access Point. Uploads transfer files from the Access Point. The TFTP server performs file transfers in both directions.
• Group - A logical collection of network parameter information. For example, the System Group is composed of several related parameters. Groups can also contain Tables. All items for a given Group can be displayed with a `show <Group>` CLI Command.
• Image File - The Access Point software executed from RAM. To update an Access Point you typically download a new Image File. This file is often referred to as the “AP Image”.
• Parameter - A fundamental network value that can be displayed and may be changeable. For example, the Access Point must have a unique IP Address and the Wireless interface must be assigned an SSID. Change parameters with the CLI `set` Command, and view them with the CLI `show` Command.
• Table - Tables hold parameters for several related items. For example, you can add several potential managers to the SNMP Table. All items for a given Table can be displayed with a `show <Table>` CLI Command.
• TFTP - Refers to the TFTP Server, used for file transfers.

Navigation and Special Keys
This CLI supports the following navigation and special key functions to move the cursor along the prompt line.

<table>
<thead>
<tr>
<th>Key Combination</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete or Backspace</td>
<td>Delete previous character</td>
</tr>
<tr>
<td>Ctrl-A</td>
<td>Move cursor to beginning of line</td>
</tr>
<tr>
<td>Ctrl-E</td>
<td>Move cursor to end of line</td>
</tr>
<tr>
<td>Ctrl-F</td>
<td>Move cursor forward one character</td>
</tr>
<tr>
<td>Ctrl-B</td>
<td>Move cursor back one character</td>
</tr>
<tr>
<td>Ctrl-D</td>
<td>Delete the character the cursor is on</td>
</tr>
<tr>
<td>Ctrl-U</td>
<td>Delete all text to left of cursor</td>
</tr>
<tr>
<td>Ctrl-P</td>
<td>Go to the previous line in the history buffer</td>
</tr>
<tr>
<td>Ctrl-N</td>
<td>Go to the next line in the history buffer</td>
</tr>
<tr>
<td>Tab</td>
<td>Complete the command line</td>
</tr>
<tr>
<td>?</td>
<td>List available commands</td>
</tr>
</tbody>
</table>

CLI Error Messages
The following table describes the error messages associated with improper inputs or expected CLI behavior.

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax Error</td>
<td>Invalid syntax entered at the command prompt.</td>
</tr>
<tr>
<td>Invalid Command</td>
<td>A non-existent command has been entered at the command prompt.</td>
</tr>
<tr>
<td>Invalid Parameter Name</td>
<td>An invalid parameter name has been entered at the command prompt.</td>
</tr>
<tr>
<td>Invalid Parameter Value</td>
<td>An invalid parameter value has been entered at the command prompt.</td>
</tr>
<tr>
<td>Invalid Table Index</td>
<td>An invalid table index has been entered at the command prompt.</td>
</tr>
<tr>
<td>Invalid Table Parameter</td>
<td>An invalid table parameter has been entered at the command prompt.</td>
</tr>
<tr>
<td>Invalid Table Parameter Value</td>
<td>An invalid table parameter value has been entered at the command prompt.</td>
</tr>
<tr>
<td>Read Only Parameter</td>
<td>User is attempting to configure a read-only parameter.</td>
</tr>
<tr>
<td>Incorrect Password</td>
<td>An incorrect password has been entered in the CLI login prompt.</td>
</tr>
<tr>
<td>Download Unsuccessful</td>
<td>The download operation has failed due to incorrect TFTP server IP Address or file name.</td>
</tr>
<tr>
<td>Upload Unsuccessful</td>
<td>The upload operation has failed due to incorrect TFTP server IP Address or file name.</td>
</tr>
</tbody>
</table>

Command Line Interface (CLI) Variations
Administrators use the CLI to control Access Point operation and monitor network statistics. The AP supports two types of CLI: the Bootloader CLI and the normal CLI. The Bootloader CLI provides a limited command set, and is used when the current AP Image is bad or missing. The Bootloader CLI allows you to assign an IP Address and download a new image. Once the image is downloaded and running, the Access Point uses the normal CLI. This guide covers the normal CLI unless otherwise specified.
Bootloader CLI

The Bootloader CLI is a minimal subset of the normal CLI used to perform initial configuration of the AP. This interface is only accessible via the serial interface if the AP does not contain a software image or if a download image command over TFTP has failed.

The Bootloader CLI provides you with the ability to configure the initial setup parameters as well as download a software image to the device.

The following functions are supported by the Bootloader CLI:

- `set` command to configure initial device parameters
- `show` command to view the device’s configuration parameters
- `help` command to provide additional information on all commands supported by the Bootloader CLI
- `reboot` command to reboot the device

The parameters supported by the Bootloader CLI (for viewing and modifying) are:

- System Name
- IP Address Assignment Type
- IP Address
- IP Mask
- Gateway IP Address
- TFTP Server IP Address
- Image File Name (including the file extension)

The following lists display the results of using the `help` command in the Bootloader CLI:

```
[bootloader] : help
Bootloader Commands
========== ========
help <cr>                     Display this message
reboot <cr>                    Reboots the wireless device
set <parameter> <value> <cr>  Change the value of the specified parameter
to the value provided
show <opt. parameter> <cr>    Display the current value of the specified
system parameter, or if none is specified,
display the values of all the system parameters

The system parameters are:

<table>
<thead>
<tr>
<th>System Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sysname</td>
<td>System Name</td>
</tr>
<tr>
<td>ipaddr</td>
<td>System IP Address</td>
</tr>
<tr>
<td>ipsubmask</td>
<td>System Subnet Mask</td>
</tr>
<tr>
<td>ipgw</td>
<td>Default Gateway IP Address</td>
</tr>
<tr>
<td>ipaddrtype</td>
<td>STATIC or DYNAMIC IP Address</td>
</tr>
<tr>
<td>tftpipaddr</td>
<td>TFTP Server IP Address</td>
</tr>
<tr>
<td>tftpfilename</td>
<td>Image or Binary File name</td>
</tr>
</tbody>
</table>

A special option of the set command will reset the system to its factory defaults:

```
set sysresettodefaults 1
```

Figure A-1  Results of “help” Bootloader CLI Command

The following lists display the results of using the `show` command in the Bootloader CLI:

```
[bootloader] : show
sysname : bootloader | System Name
ipaddr : 169.254.128.132 | System IP Address
ipsubmask : 255.255.0.0 | System Subnet Mask
ipgw : 169.254.128.133 | Default Gateway IP Address
ipaddrtype : dynamic | STATIC or DYNAMIC IP Address
tftpipaddr : 169.254.128.133 | TFTP Server IP Address
tftpfilename : filename | Image or Binary File name
```

Figure A-2  Results of “show” Bootloader CLI Command
CLI Command Types

This guide divides CLI Commands into two categories: Operational and Parameter Controls.

Operational CLI Commands

These commands affect Access Point behavior, such as downloading and rebooting. After entering commands (and parameters, if any) press the Enter key to execute the Command Line.

Operational commands include:

- **?**: Typing a question mark lists CLI Commands or parameters, depending on usage (you do not need to press Enter after typing this command)
- **done, exit, quit**: Terminates the CLI session
- **download**: Uses a TFTP server to download image files, config files, bootloader upgrade files, SSL certificates, SSL private keys, SSH public keys, SSH private keys, or CLI Batch files to the Access Point
- **help**: Displays general CLI help information or command help information, such as command usage and syntax
- **history**: Remembers commands to help avoid re-entering complex statements
- **passwd**: Sets the Access Point’s CLI password
- **reboot**: Reboots the Access Point in the specified time
- **search**: Lists the parameters in a specified Table
- **upload**: Uses TFTP server to upload “config” files from Access Point to TFTP default directory or specified path

? (List Commands)

This command can be used in a number of ways to display available commands and parameters.

The following table lists each operation and provides a basic example. Following the table are detailed examples and display results for each operation.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Basic Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display the Command List (Example 1)</td>
<td>[Device-Name]&gt;?</td>
</tr>
<tr>
<td>Display commands that start with specified letters (Example 2)</td>
<td>[Device-Name]&gt;s?</td>
</tr>
<tr>
<td>Display parameters for set and show Commands (Examples 3a and 3b)</td>
<td>[Device-Name]&gt;set ? [Device-Name]&gt;show ipa?</td>
</tr>
<tr>
<td>Prompt to enter successive parameters for Commands (Example 4)</td>
<td>[Device-Name]&gt;download ?</td>
</tr>
</tbody>
</table>

Example 1. Display Command list

To display the Command List, enter ?.

[Device-Name]>?

```
[Device-Name]>
show
set
download
upload
reboot
passwd
help
quit
done
exit
history
search
[Device-Name]>
```

Figure A-3   Result of “?” CLI Command
Example 2. Display specific Commands

To show all commands that start with specified letters, enter one or more letters, then ? with no space between letters and ?.

[Device-Name]> s?

Figure A-4 Result of “s?” CLI Command

Example 3. Display parameters for set and show

Example 3a allows shows every possible parameter for the set (or show) commands. Notice from Example 3a that the list is very long. Example 3b shows how to display a subset of the parameters based on initial parameter letters.

Example 3a. Display every parameter that can be changed

[Device-Name]> set ?

Figure A-5 Result of “set ?” CLI Command

Example 3b. Display parameters based on letter sequence

This example shows entries for parameters that start with the letter “i”. The more letters you enter, the fewer the results returned. Notice that there is no space between the letters and the question mark.

[Device-Name]> show ipa?

Figure A-6 Result of “show ipa?” CLI Command

[Device-Name]> show iparp?

Figure A-7 Result of “show iparp?” CLI Command
Example 4. Display Prompts for Successive Parameters

Enter the command, a space, and then ?. Then, when the parameter prompt appears, enter the parameter value.

Result: The parameter is changed and a new CLI line is echoed with the new value (in the first part of the following example, the value is the IP Address of the TFTP server).

After entering one parameter, you may add another ? to the new CLI line to see the next parameter prompt, and so on until you have entered all of the required parameters. The following example shows how this is used for the download Command. The last part of the example shows the completed download Command ready for execution.

```
[Device-Name]> download ?
<TFTP IP Address>
[Device-Name]> download 192.168.0.101 ?
<File Name>
[Device-Name]> download 192.168.0.101 apimage ?
<file type (config/img/bootloader)>
[Device-Name]> download 192.168.0.101 apimage img <CR>
```

done, exit, quit

Each of the following commands ends a CLI session:

```
[Device-Name]> done
[Device-Name]> exit
[Device-Name]> quit
```

download

Downloads the specified file from a TFTP server to the Access Point. Executing download in combination with the asterisks character (“*”) will make use of the previously set TFTP parameters. Executing download without parameters will display command help and usage information.

1. Syntax to download a file:
   Device-Name]> download <tftp server address> <path and filename> <file type>

   Example:
   [Device-Name]> download 192.168.1.100 APImage2 img

2. Syntax to display help and usage information:
   [Device-Name]> download

3. Syntax to execute the download Command using previously set (stored) TFTP Parameters:
   [Device-Name]> download *

help

Displays instructions on using control-key sequences for navigating a Command Line and displays command information and examples.

1. Using help as the only argument:
   [Device-Name]> help
Figure A-8  Results of “help” CLI Command

2. Complete command description and command usage can be provided by:

[Device-Name]> help <command name> <CR>
[Device-Name]> <command name> help <CR>

Special keys supported:
Arrow Keys

DEL, BS .... delete previous character
Ctrl-A .... go to beginning of line
Ctrl-E .... go to end of line
Ctrl-F .... go forward one character
Ctrl-B .... go backward one character
Ctrl-D .... delete current character
Ctrl-U, X .. delete to beginning of line
Ctrl-K .... delete to end of line
Ctrl-W ..... delete previous word
Ctrl-T ..... transpose previous character
Ctrl-P .... go to previous line in history buffer
Ctrl-N .... go to next line in history buffer

Tab .... will attempt command completion
# .... Comment Character
? .... will provide command listing

Examples:
'?' list all the supported commands
'sh?' list all commands that start with sh
'sh< ?' list all arguments to the show command
'sh<TAB>' complete the 'show' command

history
Shows content of Command History Buffer. The Command History Buffer stores command statements entered in the current session. To avoid re-entering long command statements, use the keyboard “up arrow” (Ctrl-P) and “down arrow” (Ctrl-N) keys to recall previous statements from the Command History Buffer. When the desired statement reappears, press the Enter key to execute, or you may edit the statement before executing it.

[Device-Name]> history

passwd
Changes the CLI Password.

[Device-Name]> passwd oldpassword newpassword newpassword

reboot
Reboots Access Point after specified number of seconds. Specify a value of 0 (zero) for immediate reboot.

[Device-Name]> reboot 0
[Device-Name]> reboot 30

search
Lists the parameters supported by the specified table. This list corresponds to the table information displayed in the HTTP interface. In this example, the CLI returns the list of parameters that make up an entry in the IP Access Table.

[Device-Name]> search mgmtipaccesstbl
upload

Uploads a text-based configuration file from the AP to the TFTP Server. Executing `upload` with the asterisk character ("*") will make use of the previously set/stored TFTP parameters. Executing `upload` without parameters will display command help and usage information.

1. Syntax to upload a file:
   ```
 [Device-Name]> upload <tftp server address> <path and filename> <filetype>
   ```

   Example:
   ```
 [Device-Name]> upload 192.168.1.100 APconfig.sys config
   ```

2. Syntax to display help and usage information:
   ```
 [Device-Name]> help upload
   ```

3. Syntax to execute the upload command using previously set (stored) TFTP Parameters:
   ```
 [Device-Name]> upload *
   ```

Parameter Control Commands

The following sections cover the two Parameter Control Commands (`show` and `set`) and include several tables showing parameter properties. These commands allow you to view (`show`) all parameters and statistics and to change (`set`) parameters.

- **show**: To see any Parameter or Statistic value, you can specify a single parameter, a Group, or a Table.
- **set**: Use this CLI Command to change parameter values. You can use a single CLI statement to modify Tables, or you can modify each parameter separately.

“show” CLI Command

Displays the value of the specified parameter, or displays all parameter values of a specified group (parameter table). Groups contain Parameters and Tables. Tables contain parameters for a series of similar entities.

To see a definition and syntax example, type only `show` and then press the **Enter** key. To see a list of available parameters, enter a question mark (?) after `show` (example: `show ?`).

Syntax:

```
[Device-Name]> show <parameter>
[Device-Name]> show <group>
[Device-Name]> show <table>
```

Examples:

```
[Device-Name]> show ipaddr
[Device-Name]> show network
[Device-Name]> show mgmtipaccesstbl
```
“set” CLI Command

Sets (modifies) the value of the specified parameter. To see a definition and syntax example, type only `set` and then press the Enter key. To see a list of available parameters, enter a space, then a question mark (?) after `set` (example: `set?`).

Syntax:

```
[Device-Name]> set <parameter> <value>
```

```
[Device-Name]> set <table> <index> <argument 1> <value 1> ... <argument N> <value N>
```

Example:

```
[Device-Name]> set sysloc "Main Lobby"
[Device-Name]> set mgmtipaccessstab 0 ipaddr 10.0.0.10 ipmask 255.255.0.0
```

Configuring Objects that Require Reboot

Certain objects supported by the Access Point require a device reboot in order for the changes to take effect. In order to inform the end-user of this behavior, the CLI provides informational messages when the user has configured an object that requires a reboot. The following messages are displayed as a result of the configuring such object or objects.

Example 1: Configuring objects that require the device to be rebooted

The following message is displayed every time the user has configured an object that requires the device to be rebooted.

```
[Device-Name]> set ipaddr 135.114.73.10
```

The following elements require reboot

```
ipaddr
```

Example 2: Executing the “exit”, “quit”, or “done” commands when an object that requires reboot has been configured

In addition to the above informational message, the CLI also provides a message as a result of the `exit`, `quit`, or `done` command if changes have been made to objects that require reboot. If you make changes to objects that require reboot and execute the exit command the following message is displayed:

```
[Device-Name]> exit<CR> OR quit<CR> OR done<CR>
```

Modifications have been made to parameters that require the device to be rebooted. These changes will only take effect after the next reboot.

“set” and “show” Command Examples

In general, you will use the CLI show Command to view current parameter values and use the CLI `set` Command to change parameter values. As shown in the following examples, parameters may be set individually or all parameters for a given table can be set with a single statement.

Example 1 - Set the Access Point IP Address Parameter

Syntax:

```
[Device-Name]> set <parameter name> <parameter value>
```

Example:

```
[Device-Name]> set ipaddr 10.0.0.12
```

Result: IP Address will be changed when you reboot the Access Point. The CLI reminds you when rebooting is required for a change to take effect. To reboot immediately, enter `reboot 0` (zero) at the CLI prompt.
Example 2 - Create a table entry or row

Use 0 (zero) as the index to a table when creating an entry. When creating a table row, only the mandatory table elements are required (comment is usually an optional table element). For optional table elements, the default value is generally applied if you do not specify a value.

Syntax:

```
[Device-Name]> set <table name> <table index> <element 1> <value 1> ... <element n> <value n>
```

Example:

```
[Device-Name]> set mgmtipaccesstbl 0 ipaddr 10.0.0.10 ipmask 255.255.0.0
```

Result: A new table entry is created for IP address 10.0.0.10 with a 255.255.0.0 subnet mask.

Example 3 - Modify a table entry or row

Use the index to be modified and the table elements you would like to modify. For example, suppose the IP Access Table has one entry and you wanted to modify the IP address:

```
[Device-Name]> set mgmtipaccesstbl 1 ipaddr 10.0.0.11
```

You can also modify several elements in the table entry. Enter the index number and specific table elements you would like to modify. (Hint: Use the search Command to see the elements that belong to the table.)

```
[Device-Name]> set mgmtipaccesstbl 1 ipaddr 10.0.0.12 ipmask 255.255.255.248 cmt "First Row"
```

Example 4 - Enable, Disable, or Delete a table entry or row

The following example illustrates how to manage the second entry in a table.

Syntax:

```
[Device-Name]> set <Table> index status <enable, disable, delete>
[Device-Name]> set <Table> index status <1=enable, 2=disable, 3=delete>
```

Example:

```
[Device-Name]> set mgmtipaccesstbl 2 status enable
[Device-Name]> set mgmtipaccesstbl 2 status disable
[Device-Name]> set mgmtipaccesstbl 2 status delete
[Device-Name]> set mgmtipaccesstbl 2 status 2
```

**NOTE**

You may need to enable a disabled table entry before you can change the entry's elements.

Example 5 - Show the Group Parameters

This example illustrates how to view all elements of a group or table.

Syntax:

```
[Device-Name]> show <group name>
```

Example:

```
[Device-Name]> show network
```

Result: The CLI displays network group parameters. Note show network and show ip return the same data.
Example 6 - Show Individual and Table Parameters

1. View a single parameter.
   
   Syntax:
   
   [Device-Name]> show <parameter name>

   Example:
   
   [Device-Name]> show ipaddr

   Result: Displays the Access Point IP address.

2. View all parameters in a table.
   
   Syntax:
   
   [Device-Name]> show <table name>

   Example: [Device-Name]> show mgmtipaccesstbl

   Result: Displays the IP Access Table and its entries.

Using Tables & User Strings

Working with Tables

Each table element (or parameter) must be specified, as in the example below.

[Device-Name]> set mgmtipaccesstbl 0 ipaddr 10.0.0.10 ipmask 255.255.0.0

Below are the rules for creating, modifying, enabling/disabling, and deleting table entries.

- Creation
  - The table name is required.
  - The table index is required – for table entry-instance creation the index is always zero (0).
  - The order in which the table arguments or objects are entered is not important.
  - Parameters that are not required can be omitted, in which case they will be assigned the default value.
• Modification
  – The table name is required.
  – The table index is required – to modify the table, “index” must be the index of the entry to be modified.
  – Only the table objects that are to be modified need to be specified. Not all the table objects are required.
  – If multiple table objects are to be modified the order in which they are entered is not important.
  – If the entire table entry is to be modified, all the table objects have to be specified.
• Enabling/Disabling
  – The table name is required.
  – The table index is required – for table enabling/disabling the index should be the index of the entry to be enabled/disabled.
  – The entry’s new state (either “enable” or “disable”) is required.
• Deletion
  – The table name is required.
  – The table index is required – for table deletion the index should be the index of the entry to be deleted.
  – The word “delete” is required.

Using Strings
Since there are several string objects supported by the AP, a string delimiter is required for the strings to be interpreted correctly by the command line parser. For this CLI implementation, the single quote or double quote character can be used at the beginning and at the end of the string.

For example:

```
[Device-Name]> set sysname Lobby - Does not need quote marks
[Device-Name]> set sysname “Front Lobby” - Requires quote marks.
```

The scenarios supported by this CLI are:

- "My Desk in the office" Double Quotes
- 'My Desk in the office' Single Quotes
- "My 'Desk' in the office" Single Quotes within Double Quotes
- 'My "Desk" in the office' Double Quotes within Single Quotes
- "Daniel's Desk in the office" One Single Quote within Double Quotes
- 'Daniel's Desk in the office' One Double Quote within Single Quotes

The string delimiter does not have to be used for every string object. The single quote or double quote only has to be used for string objects that contain blank space characters. If the string object being used does not contain blank spaces, then the string delimiters, single or double quotes, mentioned in this section are not required.

Configuring the AP using CLI commands

Log into the AP using HyperTerminal

1. Open your terminal emulation program (like HyperTerminal) and set the following connection properties:
   - Com Port: <COM1, COM2, etc., depending on your computer>
   - Baud rate: 9600
   - Data Bits: 8
   - Stop bits: 1
   - Flow Control: None
   - Parity: None
2. Under File > Properties > Settings > ASCII Setup, enable the Send line ends with line feeds option.
   Result: HyperTerminal sends a line return at the end of each line of code.
3. Enter the CLI password (default is public).
NOTE
SYSTIMAX recommends changing your default passwords immediately. To perform this operation using CLI commands, refer to Change Passwords.

Log into the AP using Telnet
The CLI commands can be used to access, configure, and manage the AP using Telnet. Follow these steps:

1. Confirm that your computer’s IP address is in the same IP subnet as the AP.

   NOTE
   If you have not previously configured the Access Point’s IP address and do not have a DHCP server on the network, the Access Point will default to an IP address of 169.254.128.132.

2. Go to the DOS command prompt on your computer.
3. Type `telnet <IP Address of the unit>`.
4. Enter the CLI password (default is `public`).

   NOTE
   SYSTIMAX recommends changing your default passwords immediately. To perform this operation using CLI commands, refer to Change Passwords.

Set Basic Configuration Parameters using CLI Commands
There are a few basic configuration parameters that you may want to setup right away when you receive the AP. For example:

- Set System Name, Location and Contact Information
- Set Static IP Address for the AP
- Download an AP Configuration File from your TFTP Server
- Set up Auto Configuration
- Set Network Names for the Wireless Interface
- Enable 802.11d Support and Set the Country Code
- Enable and Configure TX Power Control for the Wireless Interface(s)
- Configure SSID (Network Name) and VLAN Pairs, and Profiles
- Download an AP Configuration File from your TFTP Server
- Backup your AP Configuration File

Set System Name, Location and Contact Information
[Device-Name] > set sysname <system name> sysloc <Unit Location>
[Device-Name] > set sysctname <Contact Name (person responsible for system)>
[Device-Name] > set sysctphone <Contact Phone Number> sysctemail <Contact E-mail address>
[Device-Name] > show system
Set Static IP Address for the AP

### NOTE
The IP Subnet Mask of the AP must match your network’s Subnet Mask.

```plaintext
[Device-Name]> set ipaddrtype static
[Device-Name]> set ipaddr <fixed IP address of unit>
[Device-Name]> set ipsubmask <IP Mask>
[Device-Name]> set ipgw <gateway IP address>
[Device-Name]> show network
```

Change Passwords

```plaintext
[Device-Name]> passwd <Old Password> <New Password> <Confirm Password> (CLI password)
[Device-Name]> set httppasswd <New Password> (HTTP interface password)
[Device-Name]> set snmpreadpasswd <New Password> (SNMP read password)
[Device-Name]> set snmpreadwritepasswd <New Password> (SNMP read/write)
[Device-Name]> set snmpv3authpasswd <New Password> (SNMPv3 authentication password)
[Device-Name]> set snmpv3privpasswd <New Password> (SNMPv3 privacy password)
[Device-Name]> reboot 0
```

### CAUTION
SYSTIMAX strongly urges you to change the default passwords to restrict access to your network devices to authorized personnel. If you lose or forget your password settings, you can always perform the Reset to Factory Default Procedure.

Set Network Names for the Wireless Interface

```plaintext
[Device-Name]> set wif <index 3> netname <Network Name (SSID) for wireless interface>
[Device-Name]> show wif
```
<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>3</td>
</tr>
<tr>
<td>Network Name</td>
<td>My Wireless Network</td>
</tr>
<tr>
<td>Interference Robustness</td>
<td>Not Supported</td>
</tr>
<tr>
<td>DTIM Period</td>
<td>1</td>
</tr>
<tr>
<td>Beacon Period</td>
<td>100</td>
</tr>
<tr>
<td>Fragmentation Threshold</td>
<td>2346</td>
</tr>
<tr>
<td>Automatic Channel Selection</td>
<td>enable</td>
</tr>
<tr>
<td>Supported Frequency Channels</td>
<td>52 56 60 64 64 149 153 157 161 165</td>
</tr>
<tr>
<td>Frequency Channel</td>
<td>149</td>
</tr>
<tr>
<td>RTS/CTS Medium Reservation</td>
<td>2347</td>
</tr>
<tr>
<td>Supported Multicast Rates</td>
<td>6 12 24</td>
</tr>
<tr>
<td>Multicast Rate</td>
<td>24</td>
</tr>
<tr>
<td>Closed System</td>
<td>disable</td>
</tr>
<tr>
<td>Load Balancing</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Medium Density Distribution</td>
<td>Not Supported</td>
</tr>
<tr>
<td>MAC Address</td>
<td>00:20:A6:53:17:E1</td>
</tr>
<tr>
<td>Supported Data Rates</td>
<td>0 6 9 12 18 24 36 48 54</td>
</tr>
<tr>
<td>Transmit Rate</td>
<td>0</td>
</tr>
<tr>
<td>Physical Layer Type</td>
<td>OFDM</td>
</tr>
<tr>
<td>Regulatory Domain List</td>
<td>USA (FCC)</td>
</tr>
<tr>
<td>TurboMode</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Supported Operational Modes</td>
<td>dot11a-only</td>
</tr>
<tr>
<td>Operational Mode</td>
<td>dot11a-only</td>
</tr>
<tr>
<td>Short Slot Time Status</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Preamble Type</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Short Preamble Mode</td>
<td>disable</td>
</tr>
<tr>
<td>802.11d Status</td>
<td>disable</td>
</tr>
<tr>
<td>Current Transmit Power Level</td>
<td>1</td>
</tr>
<tr>
<td>WSS Status</td>
<td>resume</td>
</tr>
<tr>
<td>SuperMode</td>
<td>disable</td>
</tr>
<tr>
<td>QoS Status</td>
<td>disable</td>
</tr>
<tr>
<td>Maximum Medium Threshold</td>
<td>90</td>
</tr>
<tr>
<td>Security Per SSID Status</td>
<td>disable</td>
</tr>
</tbody>
</table>

Figure A-13  Results of “show wif” CLI Command
Enable 802.11d Support and Set the Country Code

Perform the following command to enable 802.11d IEEE 802.11d support for additional regulatory domains.

```
[Device-Name]> set wif <index> dot11dstatus <enable/disable>
```

Perform the following command to set a country code:

```
[Device-Name]> set syscountrycode <country code>
```

Select a country code from the following table. Note that not all countries are available for all products. This table is derived from ISO 3166.

### 802.11d Country Codes

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria</td>
<td>DZ</td>
<td>Honduras</td>
<td>HN</td>
<td>Panama</td>
<td>PA</td>
<td></td>
</tr>
<tr>
<td>Albania</td>
<td>AL</td>
<td>Hong Kong</td>
<td>HK</td>
<td>Papua New Guinea</td>
<td>PG</td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>AR</td>
<td>Hungary</td>
<td>HU</td>
<td>Peru</td>
<td>PE</td>
<td></td>
</tr>
<tr>
<td>Armenia</td>
<td>AM</td>
<td>Iceland</td>
<td>IS</td>
<td>Philippines</td>
<td>PH</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>AU</td>
<td>India</td>
<td>IN</td>
<td>Poland</td>
<td>PL</td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>AT</td>
<td>Indonesia</td>
<td>ID</td>
<td>Portugal</td>
<td>PT</td>
<td></td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>AZ</td>
<td>Ireland 5.8 GHz</td>
<td>I1</td>
<td>Puerto Rico</td>
<td>PR</td>
<td></td>
</tr>
<tr>
<td>Bahrain</td>
<td>BH</td>
<td>Israel</td>
<td>IL</td>
<td>Qatar</td>
<td>QA</td>
<td></td>
</tr>
<tr>
<td>Belarus</td>
<td>BY</td>
<td>Italy</td>
<td>IT</td>
<td>Romania</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>BE</td>
<td>Jamaica</td>
<td>JM</td>
<td>Russia</td>
<td>RU</td>
<td></td>
</tr>
<tr>
<td>Belize</td>
<td>BZ</td>
<td>Japan</td>
<td>JP</td>
<td>Samoa</td>
<td>WS</td>
<td></td>
</tr>
<tr>
<td>Bolivia</td>
<td>BO</td>
<td>Japan2</td>
<td>J2</td>
<td>Saudi Arabia</td>
<td>SA</td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>BR</td>
<td>Jordan</td>
<td>JO</td>
<td>Singapore</td>
<td>SG</td>
<td></td>
</tr>
<tr>
<td>Brunei Darussalam</td>
<td>BN</td>
<td>Kazakhstan</td>
<td>KZ</td>
<td>Slovak Republic</td>
<td>SK</td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td>BG</td>
<td>North Korea</td>
<td>KP</td>
<td>Slovenia</td>
<td>SI</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>CA</td>
<td>Korea Republic</td>
<td>KR</td>
<td>South Africa</td>
<td>ZA</td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td>CL</td>
<td>Korea Republic2</td>
<td>K2</td>
<td>South Korea</td>
<td>KR</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>CN</td>
<td>Kuwait</td>
<td>KW</td>
<td>Spain</td>
<td>ES</td>
<td></td>
</tr>
<tr>
<td>Colombia</td>
<td>CO</td>
<td>Latvia</td>
<td>LV</td>
<td>Sweden</td>
<td>SE</td>
<td></td>
</tr>
<tr>
<td>Costa Rica</td>
<td>CR</td>
<td>Lebanon</td>
<td>LB</td>
<td>Switzerland</td>
<td>CH</td>
<td></td>
</tr>
<tr>
<td>Croatia</td>
<td>HR</td>
<td>Liechtenstein</td>
<td>LI</td>
<td>Syria</td>
<td>SY</td>
<td></td>
</tr>
<tr>
<td>Cyprus</td>
<td>CY</td>
<td>Lithuania</td>
<td>LT</td>
<td>Taiwan</td>
<td>TW</td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td>CZ</td>
<td>Luxembourg</td>
<td>LU</td>
<td>Thailand</td>
<td>TH</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>DK</td>
<td>Macau</td>
<td>MO</td>
<td>Turkey</td>
<td>TR</td>
<td></td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>DO</td>
<td>Macedonia</td>
<td>MK</td>
<td>Ukraine</td>
<td>UA</td>
<td></td>
</tr>
<tr>
<td>Ecuador</td>
<td>EC</td>
<td>Malaysia</td>
<td>MY</td>
<td>United Arab Emirates</td>
<td>AE</td>
<td></td>
</tr>
<tr>
<td>Egypt</td>
<td>EG</td>
<td>Malta</td>
<td>MT</td>
<td>United Kingdom</td>
<td>GB</td>
<td></td>
</tr>
<tr>
<td>El Salvador</td>
<td>SV</td>
<td>Mexico</td>
<td>MX</td>
<td>United Kingdom 5.8ghz</td>
<td>G1</td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td>EE</td>
<td>Monaco</td>
<td>MC</td>
<td>United States</td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>FI</td>
<td>Morocco</td>
<td>MA</td>
<td>United States World</td>
<td>UW</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>FR</td>
<td>Netherlands</td>
<td>NL</td>
<td>United States Dfs</td>
<td>U1</td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td>GE</td>
<td>New Zealand</td>
<td>NZ</td>
<td>Uruguay</td>
<td>UY</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>DE</td>
<td>Nicaragua</td>
<td>NI</td>
<td>Venezuela</td>
<td>VE</td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>GR</td>
<td>Norway</td>
<td>NO</td>
<td>Vietnam</td>
<td>VN</td>
<td></td>
</tr>
<tr>
<td>Guam</td>
<td>GU</td>
<td>Oman</td>
<td>OM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guatemala</td>
<td>GT</td>
<td>Pakistan</td>
<td>PK</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Enable and Configure TX Power Control for the Wireless Interface(s)

The TX Power Control feature lets the user configure the transmit power level of the radio in the AP at one of four levels:

- 100% of the maximum transmit power level of the radio
- 50%
- 25%
- 12.5%

Perform the following commands to enable TX Power Control and set the transmit power level. Note that allowed values are: 1 (100%), 2 (50%), 3 (25%), 4 (12.5%).

```
[Device-Name]> set txpowercontrol enable
```

```
[Device-Name]> set wif <interface number> currenttxpowerlevel <value> (see below)
```

### Level Value

<table>
<thead>
<tr>
<th>Level</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>1</td>
</tr>
<tr>
<td>50%</td>
<td>2</td>
</tr>
<tr>
<td>25%</td>
<td>3</td>
</tr>
<tr>
<td>12.5%</td>
<td>4</td>
</tr>
</tbody>
</table>

Configure SSID (Network Name) and VLAN Pairs, and Profiles

Perform the following command to configure an SSID/VLAN pair, and to assign a Security Profile and RADIUS Profiles to it.

```
[Device-Name]> set wifssidtbl <Index.subindex> ssid <Network Name> vlanid <-1 to 1094> ssidauth <enable/disable> acctstatus <enable/disable> secprofile <Security Profile Number> radmacprofile <MAC Authentication Profile Name> radeapprofile <EAP Authentication Profile Name> radacctprofile <Accounting Profile Name> radmacauthstatus <enable/disable> aclstatus <enable/disable>
```

Example:

```
[Device-Name]> set wifssidtbl 3.1 ssid accesspt1 vlanid 22 ssidauth enable acctstatus enable secprofile 1 radmacprofile "MAC Authentication" radeapprofile "EAP Authentication" radacctprofile "Accounting" radmacauthstatus enable aclstatus enable
```

Download an AP Configuration File from your TFTP Server

Begin by starting your TFTP program. It must be running and configured to transmit and receive.

```
[Device-Name]> set tftpfilename <file name> tftpfiletype config
tftpipaddr <IP address of your TFTP server>
```

```
[Device-Name]> show tftp (to ensure the filename, file type, and the IP address are correct)
[Device-Name]> download *
[Device-Name]> reboot 0
```

After following the complete process (above) once, you can download a file of the same name (so long as all the other parameters are the same), with the following command:

```
[Device-Name]> download *
```

Backup your AP Configuration File

Begin by starting your TFTP program. It must be running and configured to transmit and receive.

```
[Device-Name]> upload <TFTP Server IP address> <tftpfilename (such as "config.sys")> config
```

```
[Device-Name]> show tftp (to ensure the filename, file type, and the IP address are correct)
```

After setting the TFTP parameters, you can backup your current file (so long as all the other parameters are the same), with the following command:
Set up Auto Configuration
The Auto Configuration feature allows an AP to be automatically configured by downloading a specific configuration file from a TFTP server during the boot up process.

Perform the following commands to enable and set up automatic configuration:

```
Note
The configuration filename and TFTP server IP address are configured only when the AP is configured for Static IP. If the AP is configured for Dynamic IP these parameters are not used and obtained from DHCP.
The default filename is "config". The default TFTP IP address is "169.254.128.133" for AirSPEEDAP541.
```

```
[Device-Name]>upload *
```

```
[Device-Name]>set autoconfigstatus <enable/disable>
```

```
[Device-Name]>set autoconfigfilename <filename>
Enter the filename of the configuration file that is used if the AP is configured for Static IP.
```

```
[Device-Name]>set autoconfigTFTPaddr <IP address>
Enter the TFTP server address that is used if the AP is configured for Static IP.
```

Other Network Settings
There are other configuration settings that you may want to set for the AP. Some of them are listed below.

- Configure the AP as a DHCP Server
- Configure the DNS Client
- Configure DHCP Relay and Configure DHCP Relay Servers
- Maintain Client Connections using Link Integrity
- Change your Wireless Interface Settings
- Set Ethernet Speed and Transmission Mode
- Set Interface Management Services
- Configure MAC Access Control
- Set RADIUS Parameters
- Set Rogue Scan Parameters
- Set Hardware Configuration Reset Parameters
- Set VLAN/SSID Parameters

```
Note
Refer to Performing Advanced Configuration for more information on these settings.
```

Configure the AP as a DHCP Server

```
Note
You must have at least one entry in the DHCP Server IP Address Pool Table before you can set the DHCP Server Status to Enable.
```

```
[Device-Name]>set dhcpstatus disable
[Device-Name]>set dhcpippooltbl 0 startipaddr <start ip address> endipaddr <end ip address>
[Device-Name]>set dhcppgw <gateway ip address>
[Device-Name]>set dhcpprimarydnsipaddr <primary dns ip address>
[Device-Name]>set dhcpsecondarydnsipaddr <secondary dns ip address>
[Device-Name]>set dhcpstatus enable
[Device-Name]>reboot 0
```
CAUTION

Before enabling this feature, confirm that the IP address pools you have configured are valid addresses on the network and do not overlap the addresses assigned by any other DHCP server on the network. Enabling this feature with incorrect address pools will cause problems on your network.

Configure the DNS Client

[Device-Name] > set dnsstatus enable
[Device-Name] > set dnsprisvripaddr <IP address of primary DNS server>
[Device-Name] > set dnssecsvripaddr <IP address of secondary DNS server>
[Device-Name] > set dnsdomainname <default domain name>

Configure DHCP Relay

Perform the following command to enable or disable DHCP Relay Agent Status.

NOTE

You must have at least one entry in the DHCP Relay Server Table before you can set the DHCP Relay Status to Enable.

[Device-Name] > set dhcprelaystatus enable

Configure DHCP Relay Servers

Perform the following command to configure and enable a DHCP Relay Server. The AP allows the configuration of a maximum of 10 server settings in the DHCP Relay Agents server table.

[Device-Name] > set dhcprlyindex 1 dhcprlyipaddr <ip address> dhcprlycmt <comment> dhcprlystatus 1 (1 to enable, 2 to disable, 3 to delete, 4 to create)

Maintain Client Connections using Link Integrity

[Device-Name] > show linkinttbl (this shows the current links)
[Device-Name] > set linkinttbl <1-5> (depending on what table row you wish to address) ipaddr <ip address of the host computer you want to check>
[Device-Name] > set linkintpollint <the interval between link integrity checks>
[Device-Name] > set linkintpollretx <number of times to retransmit before considering the link down>

[Device-Name] > set linkintstatus enable
[Device-Name] > show linkinttbl (confirm new settings)
[Device-Name] > reboot 0

Change your Wireless Interface Settings

See Interfaces for information on the parameters listed below. The AirSPEED AP541 uses index 3.
Operational Mode

[Device-Name]> set wif <index> mode <see below>

<table>
<thead>
<tr>
<th>Mode</th>
<th>Operational Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>dot11b-only</td>
</tr>
<tr>
<td>2</td>
<td>dot11g-only</td>
</tr>
<tr>
<td>3</td>
<td>dot11bg</td>
</tr>
<tr>
<td>4</td>
<td>dot11a-only</td>
</tr>
<tr>
<td>5</td>
<td>dot11g-wifi</td>
</tr>
</tbody>
</table>

Autochannel Select (ACS)

ACS is enabled by default. Reboot after disabling or enabling ACS.

[Device-Name]> set wif <index> autochannel <enable/disable>
[Device-Name]> reboot 0

Enable/Disable Closed System

[Device-Name]> set wif <index> closedsys <enable/disable>

Shutdown/Resume Wireless Service

[Device-Name]> set wif <index> wssstatus <1 (resume)/2 (shutdown)>

Set Load Balancing Maximum Number of Clients

[Device-Name]> set wif <index> lbmaxclients <1-63>

Set the Multicast Rate

[Device-Name]> set wif <index> multrate <1, 2, 5.5, 6, 11, 12, 24 (Mbits/s) (see below)>

Enable/Disable Super Mode (802.11a mode and 802.11g mode only)

[Device-Name]> set wif <index> super <enable/disable>

Enable/Disable Turbo Mode (802.11a mode and 802.11g mode only)

[Device-Name]> set wif <index> turbo <enable/disable>

NOTE
Super mode must be enabled on the interface before Turbo mode can be enabled.

Configure Antenna Diversity

[Device-Name]> set wif <index> atdiversity <1, 2, 5(auto)>
[Device-Name]> reboot 0
Set the Distance Between APs

[Device-Name]> set wif <index> distaps <1-5> (see below)
[Device-Name]> reboot 0

<table>
<thead>
<tr>
<th>Value</th>
<th>Distance Between APs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Large</td>
</tr>
<tr>
<td>2</td>
<td>Medium</td>
</tr>
<tr>
<td>3</td>
<td>Small</td>
</tr>
<tr>
<td>4</td>
<td>Mini</td>
</tr>
<tr>
<td>5</td>
<td>Micro</td>
</tr>
</tbody>
</table>

Set Ethernet Speed and Transmission Mode

[Device-Name]> set etherspeed <value (see below)>
[Device-Name]> reboot 0

<table>
<thead>
<tr>
<th>Ethernet Speed and Transmission Mode</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Mbits/s - half duplex</td>
<td>10halfduplex</td>
</tr>
<tr>
<td>10 Mbits/s - full duplex</td>
<td>10fullduplex</td>
</tr>
<tr>
<td>10 Mbits/s - auto duplex</td>
<td>10autoduplex</td>
</tr>
<tr>
<td>100 Mbits/s - half duplex</td>
<td>100halfduplex</td>
</tr>
<tr>
<td>100 Mbits/s - full duplex</td>
<td>100fullduplex</td>
</tr>
<tr>
<td>Auto Speed - half duplex</td>
<td>autohalfduplex</td>
</tr>
<tr>
<td>Auto Speed - auto duplex</td>
<td>autoautoduplex (default)</td>
</tr>
</tbody>
</table>

Set Interface Management Services

Edit Management IP Access Table

[Device-Name]> set mgmtipaccesstbl <index> ipaddr <IP address> ipmask <subnet mask>

Configure Management Ports

[Device-Name]> set snmpifbitmap <(see below)>
[Device-Name]> set httpifbitmap <(see below)>
[Device-Name]> set telifbitmap <(see below)>

Choose from the following values:

<table>
<thead>
<tr>
<th>Interface Bitmap</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 or 2 = disable (all interfaces)</td>
<td>All management channels disabled</td>
</tr>
<tr>
<td>1 or 3 = Ethernet only</td>
<td>Ethernet only enabled</td>
</tr>
<tr>
<td>4 or 6 = Wireless only</td>
<td>Wireless only enabled</td>
</tr>
<tr>
<td>5 or 7 = all interfaces</td>
<td>All management channels enabled</td>
</tr>
</tbody>
</table>

Set Communication Ports

[Device-Name]> set httpport <HTTP port number (default is 80)>
[Device-Name]> set telport <Telnet port number (default is 23)>

Configure Secure Socket Layer (HTTPS)

Enabling SSL and configuring a passphrase allows encrypted Secure Socket Layer communications to the AP through the HTTPS interface.

[Device-Name]> set sslstatus <enable/disable>

The user must change the SSL passphrase when uploading a new certificate/private key pair, which will have a
corresponding passphrase.

[Device-Name]\$ set sslpassphrase <SSL certificate passphrase>

View HTTP Information

To view all HTTP configuration information including SSL, use the show http command.

[Device-Name]\$ show http

```
[Device-Name]\$ show http
HTTP Group Parameters
===
httpifbitmask : 15
httppasswd : ********
httpport : 80
httpheplink : file://C:/ProgramFiles/AirSPEED/AP541/HTML/home.htm
htsetupwiz : disable
ssltstatus : enable
sslpassphrase: ********
```

Figure A-15  Results of “show http” CLI Command

Set Telnet Session Timeouts

[Device-Name]\$ set tellogintout <time in seconds between 1 and 300 (default is 30)>
[Device-Name]\$ set telsessiontout <time in seconds between 1 and 36000 (default is 900)>

Configure Serial Port Interface

**NOTE**

To avoid unexpected performance issues, leave Flow Control at the default setting (none) unless you are sure what this setting should be.

[Device-Name]\$ set serbaudrate <2400, 4800, 9600, 19200, 38400, 57600>
[Device-Name]\$ set serflowctrl <none, xonxoff>

```
[Device-Name]\$ show serial
Serial Interface Group Parameters
=================================
serbaudrate : 9600
serdatabits : 8
serparity : none
serstopbits : 1
serflowctrl : none
```

Figure A-16  Result of “show serial” CLI Command

Configure Syslog

[Device-Name]\$ set syslogpriority <1-7 (default is 6)>
[Device-Name]\$ set syslogstatus <enable/disable>
[Device-Name]\$ set syslogbsstatus <enable/disable> (default is disable)
[Device-Name]\$ set syslogbsinterval <1 - 604800> (default is 900 seconds)
[Device-Name]\$ set sysloghosttbl <index> ipaddr <ipaddress> cmt <comment> status <enable/disable>

Configure Intra BSS

[Device-Name]\$ set intrabssoptype <passthru (default)/block>
Configure MAC Access Control

Setup MAC (Address) Access Control

[Device-Name] > set aclstatus enable/disable
[Device-Name] > set macacloptype <passthru, block>
[Device-Name] > reboot 0

Add an Entry to the MAC Access Control Table

[Device-Name] > set macacltbl <index> macaddr <MAC Address> status enable
[Device-Name] > show macacltbl

Disable or Delete an Entry in the MAC Access Control Table

[Device-Name] > set macacltbl <index> status <disable/delete>
[Device-Name] > show macacltbl

For larger networks that include multiple Access Points, you may prefer to maintain this list on a centralized location using the RADIUS parameters (see Set RADIUS Parameters).

Set RADIUS Parameters

Configure RADIUS Authentication servers

Perform the following command to configure a RADIUS Server and assign it to a VLAN. The RADIUS Server Profile index is specified by the index parameter and the subindex parameter specifies whether you are configuring a primary or secondary RADIUS server.

[Device-Name] > set radiustbl <Index> profname <Profile Name> seraddrfmt <1 - IP Address 2 - Name> sernameorip <IP Address or Name> port <value> ssecret <value> responsetm <value> maxretrx <value> acctupdtintrvl <value> macaddrfmt <value> authlifetm <value> radaccinactivetmr <value> vlanid <vlan id -1 to 4094> status enable

Examples of Configuring Primary and Secondary RADIUS Servers and Displaying the RADIUS Configuration

Primary server configuration:

[Device-Name] > set radiustbl 1.1 profname "MAC Authentication" seraddrfmt 1 sernameorip 20.0.0.20 port 1812 ssecret public responsetm 3 maxretrx 3 acctupdtintrvl 0 macaddrfmt 1 authlifetm 900 radaccinactivetmr 5 vlanid 22 status enable

Secondary server configuration:

[Device-Name] > set radiustbl 1.2 profname "MAC Authentication" seraddrfmt 1 sernameorip 20.0.0.30 port 1812 ssecret public responsetm 3 maxretrx 3 acctupdtintrvl 0 macaddrfmt 1 authlifetm 900 radaccinactivetmr 5 vlanid 33 status enable

Results of show radiustbl command:

[Device-Name] > show radiustbl
Set Rogue Scan Parameters

Perform the following command to enable or disable Rogue Scan on a wireless interface and configure the scanning parameters.

The cycletime parameter is only configured for background scanning mode.

```
[Device-Name]> set rscantbl <3, 4> mode <1 for background scanning, 2 for continuous scanning> cycletime <cycletime from 1-1440 minutes> status <enable, disable>
```

**NOTE**

Rogue Scan cannot be enabled on a wireless interface when the Wireless Service Status on that interface is shutdown. First, resume service on the wireless interface.

Set Hardware Configuration Reset Parameters

The Hardware Configuration Reset commands allows you to enable or disable the hardware reset functionality and to change the password to be used for configuration reset during boot up.

To disable hardware configuration reset, enter:

```
[Device-Name]> set hwconfigresetstatus disable
```

To enable hardware configuration reset, enter:

```
[Device-Name]> set hwconfigresetstatus enable
```

To define the Configuration Reset Password to be used for configuration reset during boot up, enter the following command

```
[Device-Name]> set configresetpasswd <password>
```
NOTE

It is important to safely store the configuration reset password. If a user forgets the configuration reset password, the user will be unable to reset the AP to factory default configuration if the AP becomes inaccessible and the hardware configuration reset functionality is disabled.

Set VLAN/SSID Parameters

Enable VLAN Management

[Device-Name] > set vlanstatus enable
[Device-Name] > set vlanmgmtid <-1-4094>
[Device-Name] > show wifssidtbl (to review your settings)
[Device-Name] > reboot 0

Disable VLAN Management

[Device-Name] > set vlanstatus disable
[Device-Name] > set vlanmgmtid 0
[Device-Name] > reboot 0

Add a Entry to the WIFSSID Table

[Device-Name] > set wifssidtbl <index> ssid <Network Name> vlanid <-1-4094> status enable
CLI Monitoring Parameters

Using the show command with the following table parameters will display operating statistics for the AP (these are the same statistics that are described in Monitoring the AirSPEED AP541 for the HTTP Web interface).

- `staticmp`: Displays the ICMP statistics.
- `statarptbl`: Displays the IP ARP Table statistics.
- `statbridgetbl`: Displays the Learn Table.
- `statiapp`: Displays the IAPP statistics.
- `statradius`: Displays the RADIUS Authentication statistics.
- `statif`: Displays information and statistics about the Ethernet and wireless interfaces.
- `stat802.11`: Displays additional statistics for the wireless interfaces.
- `statethernet`: Displays additional statistics for the Ethernet interface.
- `statmss`: Displays station statistics and Wireless Distribution System links.

Parameter Tables

Objects contain groups that contain both Parameters and Parameter Tables. Use the following tables to configure the Access Point. Columns used on the tables include:

- **Name** - Parameter, Group, or Table name
- **Type** - Data type
- **Values** - Value range, and default value, if any
- **Access** - Access type, R = Read Only (show), RW = Read-Write (can be "set"), W = Write Only
- **CLI Parameter** - Parameter name as used in the Access Point

Access Point network objects are associated with Groups. The network objects are listed below and associated parameters are described in the following Parameter Tables:

- **System Parameters** - Access Point system information
  - **Inventory Management Information** - Hardware, firmware, and software version information
- **Network Parameters** - IP and network settings
  - **IP Configuration Parameters** - Configure the Access Point’s IP settings
    - **DNS Client for RADIUS Name Resolution** - Configure the Access Point as a DNS client
  - **DHCP Server Parameters** - Enable or disable dynamic host configuration
  - **Link Integrity Parameters** - Monitor link status
- **Interface Parameters** - Configure wireless and Ethernet settings
  - **Wireless Interface Parameters**
    - **Wireless Distribution System (WDS) Parameters** - Configure the WDS partnerships
  - **Wireless Interface SSID/VLAN/Profile Parameters** - Configure the SSID and VLAN pairs and the security mode for each pair. Up to 16 pairs can be configured per wireless interface.
  - **Ethernet Interface Parameters** - Set the speed and duplex of the Ethernet port
- **Management Parameters** - Control access to the AP’s management interfaces
  - **SNMP Parameters** - Set read and read/write passwords
  - **HTTP (web browser) Parameters** - Set up the graphical web browser interface. If required, enable SSL and configure the SSL certificate passphrase.
  - **Telnet Parameters** - Telnet port setup
  - **Serial Port Parameters** - Serial port setup
  - **RADIUS Based Management Access Parameters** - Configure RADIUS-based management access for HTTP and telnet access
  - **SSH Parameters** - Enable SSH and configure the host key
  - **TFTP Server Parameters** - Set up for file transfers; specify IP Address, file name, and file type
  - **IP Access Table Parameters** - Configure range of IP addresses that can access the AP
  - **Auto Configuration Parameters** - Configure the Auto Configuration feature, which allows an AP to be automatically configured by downloading a configuration file from a TFTP server during boot up
- **Filtering Parameters**
- Ethernet Protocol Filtering Parameters - Control network traffic based on protocol type
- Static MAC Address Filter Table - Enable and disable specific addresses
- Proxy ARP Parameters - Enable or disable proxy ARP for wireless clients
- IP ARP Filtering Parameters - Control which ARP messages are sent to wireless clients based on IP settings
- Broadcast Filtering Table - Control the type of broadcast packets forwarded to the wireless network
- TCP/UDP Port Filtering - Filter IP packets based on TCP/UDP port

• Alarms Parameters
  - SNMP Table Host Table Parameters - Enter the list of IP addresses that will receive alarms from the AP
  - Syslog Parameters - Configure the AP to send syslog information to network servers

• Bridge Parameters
  - Spanning Tree Parameters - Used to help prevent network loops
  - Storm Threshold Parameters - Set threshold for number of broadcast packets
  - Intra BSS Subscriber Blocking - Enable or disable peer to peer traffic on the same AP
  - Packet Forwarding Parameters - Redirect traffic from wireless clients to a specified MAC address

• RADIUS Parameters
  - Set RADIUS Parameters - Configure RADIUS Servers and assign them to VLANs.

• Security Parameters - Access Point security settings
  - MAC Access Control Parameters - Control wireless access based on MAC address
  - Rogue Scan Configuration Table - Enable and configure Rogue Scan to detect Rogue APs and clients.
  - Hardware Configuration Reset - Disable or enable hardware configuration reset and configure a configuration reset password.
  - VLAN/SSID Parameters - Enable the configuration of multiple subnetworks based on VLAN ID and SSID pairs.
  - Security Profile Table - Configure security profiles that define allowed security modes (wireless clients), and encryption and authentication mechanisms.

• Other Parameters
  - IAPP Parameters - Enable or disable the Inter-Access Point Protocol
  - Wi-Fi Multimedia (WMM)/Quality of Service (QoS) parameters - Enable and configure Wi-Fi Multimedia/Quality of Service parameters, QoS policies, mapping priorities, and EDCA parameters. Apply a configured QoS policy to a particular SSID.
### System Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Group</td>
<td>N/A</td>
<td>R</td>
<td>system</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>DisplayString</td>
<td>User Defined</td>
<td>RW</td>
<td>sysname</td>
</tr>
<tr>
<td>Location</td>
<td>DisplayString</td>
<td>User Defined</td>
<td>RW</td>
<td>sysloc</td>
</tr>
<tr>
<td>Contact Name</td>
<td>DisplayString</td>
<td>User Defined</td>
<td>RW</td>
<td>sysctname</td>
</tr>
<tr>
<td>Contact E-mail</td>
<td>DisplayString</td>
<td>User Defined</td>
<td>RW</td>
<td>sysctemail</td>
</tr>
<tr>
<td>Contact Phone</td>
<td>DisplayString</td>
<td>User Defined max 254 characters</td>
<td>RW</td>
<td>sysctphone</td>
</tr>
<tr>
<td>FLASH Backup Interval</td>
<td>Integer</td>
<td>0 - 65535 seconds</td>
<td>RW</td>
<td>sysflashbckint</td>
</tr>
<tr>
<td>Flash Update</td>
<td></td>
<td>0</td>
<td>RW</td>
<td>sysflashupdate</td>
</tr>
<tr>
<td>System OID</td>
<td>DisplayString</td>
<td>N/A</td>
<td>R</td>
<td>sysoid</td>
</tr>
<tr>
<td>Descriptor</td>
<td>DisplayString</td>
<td>System Name, flash version, S/N, bootloader version</td>
<td>R</td>
<td>sysdescr</td>
</tr>
<tr>
<td>Up Time</td>
<td>Integer</td>
<td>dd:hh:mm:ss</td>
<td>R</td>
<td>sysuptime</td>
</tr>
<tr>
<td>Emergency Restore to Defaults</td>
<td></td>
<td>Resets all parameters to default factory values</td>
<td>RW</td>
<td>sysresettodefaults</td>
</tr>
</tbody>
</table>

#### Inventory Management Information

The inventory management commands display advanced information about the AP’s installed components. You may be asked to report this information to a representative if you contact customer support.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Inventory Management</td>
<td>Subgroup</td>
<td>N/A</td>
<td>R</td>
<td>sysinvmgmt</td>
</tr>
<tr>
<td>Component Table</td>
<td>Subgroup</td>
<td>N/A</td>
<td>R</td>
<td>sysinvmgmtcmptbl</td>
</tr>
<tr>
<td>Component Interface Table</td>
<td>Subgroup</td>
<td>N/A</td>
<td>R</td>
<td>sysinvmgmtcmptbl</td>
</tr>
</tbody>
</table>
Network Parameters

IP Configuration Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Group</td>
<td>N/A</td>
<td>R network</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP Configuration Group</td>
<td>N/A</td>
<td>R ip (Note: The network and ip parameters display the same information)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP Address</td>
<td>ipAddress</td>
<td>User Defined</td>
<td>RW</td>
<td>ipaddr</td>
</tr>
<tr>
<td>Default Router IP Address</td>
<td>ipAddress</td>
<td>User Defined</td>
<td>RW</td>
<td>ipgw</td>
</tr>
<tr>
<td>Default TTL</td>
<td>Integer</td>
<td>User Defined (seconds) 0-255, 64 (default)</td>
<td>RW</td>
<td>ipttl</td>
</tr>
<tr>
<td>Address Type</td>
<td>Integer</td>
<td>static dynamic (default)</td>
<td>RW</td>
<td>ipaddrtype</td>
</tr>
</tbody>
</table>

**NOTE**

The IP Address Assignment Type (ipaddrtype) must be set to static before the IP Address (ipaddr), IP Mask (ipmask) or Default Gateway IP Address (ipgw) values can be entered.

DNS Client for RADIUS Name Resolution

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Client Group</td>
<td>N/A</td>
<td>R dns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNS Client status</td>
<td>Integer</td>
<td>enable disable (default)</td>
<td>RW</td>
<td>dnsstatus</td>
</tr>
<tr>
<td>Primary DNS Server IP Address</td>
<td>ipAddress</td>
<td>User Defined</td>
<td>RW</td>
<td>dnspridnsipaddr</td>
</tr>
<tr>
<td>Secondary DNS Server IP Address</td>
<td>ipAddress</td>
<td>User Defined</td>
<td>RW</td>
<td>dnssecdnsipaddr</td>
</tr>
<tr>
<td>Default Domain Name</td>
<td>Integer32</td>
<td>User Defined (up to 254 characters)</td>
<td>RW</td>
<td>dnsdomainname</td>
</tr>
</tbody>
</table>
DHCP Server Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP Server</td>
<td>Group</td>
<td>N/A</td>
<td>R</td>
<td>dhcp</td>
</tr>
<tr>
<td>DHCP Server Status</td>
<td>Integer</td>
<td>enable (1) (default) disable (2) delete (3)</td>
<td>RW</td>
<td>dhcpcstatus</td>
</tr>
<tr>
<td>Gateway IP Address</td>
<td>IpAddress</td>
<td>User Defined</td>
<td>RW</td>
<td>dhcgw</td>
</tr>
<tr>
<td>Primary DNS IP Address</td>
<td>IpAddress</td>
<td>User Defined</td>
<td>RW</td>
<td>dhcppridnsipaddr</td>
</tr>
<tr>
<td>Secondary DNS IP Address</td>
<td>IpAddress</td>
<td>User Defined</td>
<td>RW</td>
<td>dhcppsecdnsipaddr</td>
</tr>
<tr>
<td>Number of IP Pool Table Entries</td>
<td>Integer32</td>
<td>N/A</td>
<td>R</td>
<td>dhcppipooltblent</td>
</tr>
</tbody>
</table>

**NOTE**

The DHCP Server (dhcpcstatus) can only be enabled after a DHCP IP Pool table entry has been created.

DHCP Server table for IP pools

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP Server IP Address Pool Table</td>
<td>Table</td>
<td>N/A</td>
<td>R</td>
<td>dhcppipooltbl</td>
</tr>
<tr>
<td>Table Index</td>
<td>Integer</td>
<td>User Defined</td>
<td>N/A</td>
<td>index</td>
</tr>
<tr>
<td>Start IP Address</td>
<td>IpAddress</td>
<td>User Defined</td>
<td>RW</td>
<td>startipaddr</td>
</tr>
<tr>
<td>End IP Address</td>
<td>IpAddress</td>
<td>User Defined</td>
<td>RW</td>
<td>endipaddr</td>
</tr>
<tr>
<td>Width</td>
<td>Integer</td>
<td>User Defined</td>
<td>RW</td>
<td>width</td>
</tr>
<tr>
<td>Default Lease Time (optional)</td>
<td>Integer32</td>
<td>&gt; 0 86400 sec (default)</td>
<td>RW</td>
<td>defleasetm</td>
</tr>
<tr>
<td>Maximum Lease Time (optional)</td>
<td>Integer32</td>
<td>&gt; 0 86400 sec (default)</td>
<td>RW</td>
<td>maxleasetm</td>
</tr>
<tr>
<td>Comment (optional)</td>
<td>DisplayString</td>
<td>User Defined</td>
<td>RW</td>
<td>cmt</td>
</tr>
<tr>
<td>Status (optional)</td>
<td>Integer</td>
<td>enable (1) disable (2) delete (3)</td>
<td>RW</td>
<td>status</td>
</tr>
</tbody>
</table>

**NOTE**

Set either End IP Address or Width (but not both) when creating an IP address pool.

DHCP Relay Group

The DHCP Relay Group allows you to enable or disable DHCP Relay Agent Status.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP Relay Group</td>
<td>Group</td>
<td>N/A</td>
<td>R</td>
<td>dhcprelay</td>
</tr>
<tr>
<td>Status</td>
<td>Integer</td>
<td>enable disable</td>
<td>RW</td>
<td>dhcpprelaystatus</td>
</tr>
<tr>
<td>DHCP Relay Server Table</td>
<td>Table</td>
<td></td>
<td>R</td>
<td>dhcpprelaytbl</td>
</tr>
</tbody>
</table>
DHCP Relay Server Table
The DHCP Relay Server Table contains the commands to set the table entries. The AP supports the configuration of a maximum of 10 server settings in the DHCP Relay Agents server table.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP Relay Server Table</td>
<td>Table</td>
<td>N/A</td>
<td>R</td>
<td>dhcprelaytbl</td>
</tr>
<tr>
<td>DHCP Relay Server Table Entry Index</td>
<td>Integer32</td>
<td>1...10</td>
<td>R</td>
<td>dhcprlyindex</td>
</tr>
<tr>
<td>DHCP Relay Server Table Entry IP Address</td>
<td>IpAddress</td>
<td>User Defined</td>
<td>RW</td>
<td>dhcprlyipaddr</td>
</tr>
<tr>
<td>DHCP Relay Server Table Entry Comment</td>
<td>DisplayString</td>
<td>User Defined</td>
<td>RW</td>
<td>dhcprlycmt</td>
</tr>
<tr>
<td>DHCP Relay Server Table Entry Status</td>
<td>Integer</td>
<td>enable (1)</td>
<td>RW</td>
<td>dhcprlystatus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>disable (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>delete (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>create (4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Link Integrity Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Integrity</td>
<td>Group</td>
<td>N/A</td>
<td>R</td>
<td>linkint</td>
</tr>
<tr>
<td>Link Integrity Status</td>
<td>Integer32</td>
<td>enable disable (default)</td>
<td>RW</td>
<td>linkintstatus</td>
</tr>
<tr>
<td>Link Integrity Poll Interval</td>
<td>Integer32</td>
<td>500 - 15000 ms (in increments of 500ms) 500 ms (default)</td>
<td>RW</td>
<td>linkintpollint</td>
</tr>
<tr>
<td>Link Integrity Poll Retransmissions</td>
<td>Integer32</td>
<td>0 - 255 5 (default)</td>
<td>RW</td>
<td>linkintpollretx</td>
</tr>
</tbody>
</table>

Link Integrity IP Target Table

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Integrity IP Target Table</td>
<td>Table</td>
<td>N/A</td>
<td>R</td>
<td>linkinttbl</td>
</tr>
<tr>
<td>Table Index</td>
<td>Integer32</td>
<td>1-5</td>
<td>N/A</td>
<td>index</td>
</tr>
<tr>
<td>Target IP Address</td>
<td>IpAddress</td>
<td>User Defined</td>
<td>RW</td>
<td>ipaddr</td>
</tr>
<tr>
<td>Comment (optional)</td>
<td>DisplayString</td>
<td>User Defined (up to 254 characters)</td>
<td>RW</td>
<td>cmt</td>
</tr>
<tr>
<td>Status (optional)</td>
<td>Integer32</td>
<td>enable disable (default)</td>
<td>RW</td>
<td>status</td>
</tr>
<tr>
<td></td>
<td></td>
<td>delete</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Interface Parameters

Wireless Interface Parameters

The wireless interface group parameter is `wif`. For the AP541, the Wireless Interface uses table index 3.

Common Parameters to 802.11a/b/g

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless Interfaces</td>
<td>Group</td>
<td>N/A</td>
<td>R</td>
<td>wif</td>
</tr>
<tr>
<td>Table Index</td>
<td>Integer</td>
<td>3</td>
<td>R</td>
<td>index</td>
</tr>
</tbody>
</table>
| Network Name                     | DisplayString | 1 – 32 characters  
My Wireless Network (default)   | RW     | netname                                      |
| Auto Channel Select (ACS)\(^1\)  | Integer   | enable (default)  
disable                                               | RW     | autochannel   |
| DTIM Period                      | Integer   | 1 – 255                                          |RW     | dtimperiod    |
| RTS/CTS Medium Reservation       | Integer   | 0 – 2347                                          |RW     | medres        |
| MAC Address                      | PhyAddress| 12 hex digits                                     | R      | macaddr       |
| Closed System                    | Integer   | enable (default)  
disable                                               |RW     | closedsys     |
| Wireless Service Status\(^2\)    | Integer   | 1 = resume                                        |RW     | wssstatus     |
| Supported Frequency Channels     | Octet String | Depends on Regulatory Domain                    | R      | suppchannels  |
| Load Balancing Max Clients       | Integer   | 1 – 63                                            | R/W    | lbmaxclients  |
| Antenna Diversity                | Integer   | 1 (Antenna 1),  
2 (Antenna 2),  
5 (Auto)                                             |R/W    | atdiversity   |
| Distance Between APs\(^3\)       | Integer   | 1 (large) (default)  
2 (medium)  
3 (small),  
4 (minicell),  
5 (microcell)                                 |R/W    | distaps       |

**Note 1:** For 802.11a APs certified in the ETSI regulatory domain and operating in the middle frequency band, disabling Auto Channel Select will limit the available channels to those in the lower frequency band. See Dynamic Frequency Selection (DFS).

**Note 2:** Wireless Service Status cannot be shut down on an interface where Rogue Scan is enabled.

**Note 3:** Distance Between APs allows the AP to perform better in high noise environments by increasing the receive sensitivity and transmit defer threshold, as follows:

<table>
<thead>
<tr>
<th>Distance Between APs</th>
<th>Receive Sensitivity Threshold</th>
<th>Transmit Defer Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Value</td>
<td>dBm</td>
</tr>
<tr>
<td>Large</td>
<td>0</td>
<td>-96</td>
</tr>
<tr>
<td>Medium</td>
<td>9</td>
<td>-86</td>
</tr>
<tr>
<td>Small</td>
<td>17</td>
<td>-78</td>
</tr>
<tr>
<td>Mini</td>
<td>25</td>
<td>-70</td>
</tr>
<tr>
<td>Micro</td>
<td>33</td>
<td>-62</td>
</tr>
</tbody>
</table>
### 802.11a Only Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Frequency Channel</td>
<td>Integer</td>
<td>Varies by regulatory domain and country. See 802.11a Channel Frequencies</td>
<td>RW</td>
<td>channel</td>
</tr>
<tr>
<td>Supported Data Rates</td>
<td>Octet String</td>
<td>See Transmit Rate, below</td>
<td>R</td>
<td>suppdatarates</td>
</tr>
<tr>
<td>Transmit Rate</td>
<td>Integer32</td>
<td>0 - Auto Fallback (default)</td>
<td>RW</td>
<td>brate</td>
</tr>
<tr>
<td>Physical Layer Type</td>
<td>Integer</td>
<td>OFDM (orthogonal frequency division multiplexing) for 802.11a</td>
<td>R</td>
<td>phytype</td>
</tr>
<tr>
<td>Super Mode</td>
<td>Integer</td>
<td>enable (default)</td>
<td>RW</td>
<td>supermode</td>
</tr>
<tr>
<td>Turbo Mode¹</td>
<td>Integer</td>
<td>enable (default)</td>
<td>RW</td>
<td>turbomode</td>
</tr>
</tbody>
</table>
| Regulatory Domain List        | DisplayString| FCC: U.S., Canada, Mexico, Argentina, Australia
ETS: European Union (with the exception of Hungary and the Czech Republic), Brazil, Iceland, Norway, Saudi Arabia, Switzerland
ASIA: China, Hong Kong, South Korea
SG: Singapore
TELEC: Japan
TW: Taiwan                     | R              | regdomain                                                              |

**Note 1:** Super Mode must be enabled on the wireless interface before Turbo Mode can be enabled.
### 802.11b Only Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Frequency Channel</td>
<td>Integer</td>
<td>1 - 14; available channels vary by regulatory domain/country; see 802.11b/g Channel Frequencies</td>
<td>RW</td>
<td>channel</td>
</tr>
<tr>
<td>Multicast Rate</td>
<td>Integer</td>
<td>1 Mb/s (1) 2 Mb/s (2) (default) 5.5 Mb/s (3) 11 Mb/s (4)</td>
<td>RW</td>
<td>multrate</td>
</tr>
<tr>
<td>Closed Wireless System</td>
<td>Integer</td>
<td>enable disable (default)</td>
<td>RW</td>
<td>closedsys</td>
</tr>
<tr>
<td>MAC Address</td>
<td>PhyAddress</td>
<td>12 hex digits</td>
<td>R</td>
<td>macaddr</td>
</tr>
<tr>
<td>Supported Data Rates</td>
<td>Octet String</td>
<td>1 Mb/s 2 Mb/s 5.5 Mb/s 11 Mb/s</td>
<td>R</td>
<td>suppdatarates</td>
</tr>
<tr>
<td>Transmit Rate</td>
<td>Integer32</td>
<td>0 (auto fallback - default) 1 Mb/s 2 Mb/s 5.5 Mb/s 11 Mb/s</td>
<td>RW</td>
<td>txrate</td>
</tr>
<tr>
<td>Physical Layer Type</td>
<td>Integer</td>
<td>DSSS (direct sequence spread spectrum) for 802.11b</td>
<td>R</td>
<td>phytype</td>
</tr>
<tr>
<td>Regulatory Domain List</td>
<td>DisplayString</td>
<td>FCC: U.S., Canada, Mexico, Argentina, Australia ETSI: European Union (with the exception of Hungary and the Czech Republic), Brazil, China, Iceland, India, Hong Kong, Norway, Saudi Arabia, Singapore, South Korea, Switzerland, Taiwan, United Arab Emirates TELEC: Japan</td>
<td>R</td>
<td>regdomain</td>
</tr>
</tbody>
</table>
### 802.11b/g Only Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless Operational Mode</td>
<td>Integer</td>
<td>dot11b-only, dot11g-only, dot11bg (default)</td>
<td>RW, mode</td>
<td>mode</td>
</tr>
<tr>
<td>Operating Frequency Channel</td>
<td>Integer</td>
<td>1 - 14; available channels vary by regulatory domain/country; see 802.11b/g Channel Frequencies</td>
<td>RW, channel</td>
<td>channel</td>
</tr>
<tr>
<td>Supported Data Rates</td>
<td>Octet String</td>
<td>See Transmit Rate, below</td>
<td>R, suppdatarates</td>
<td></td>
</tr>
<tr>
<td>Transmit Rate</td>
<td>Integer/32</td>
<td>For 802.11b-only mode: 0 (auto fallback - default), 1 Mbits/s, 2 Mbits/s, 5.5 Mbits/s, 11 Mbits/s; For 802.11g-only mode: 0 (auto fallback - default), 6 Mbits/s, 9 Mbits/s, 12 Mbits/s, 18 Mbits/s, 24 Mbits/s, 36 Mbits/s, 48 Mbits/s, 54 Mbits/s; For 802.11b/g mode: 0 (auto fallback - default), 1 Mbits/s, 2 Mbits/s, 5.5 Mbits/s, 11 Mbits/s, 6 Mbits/s, 9 Mbits/s, 12 Mbits/s, 18 Mbits/s, 24 Mbits/s, 36 Mbits/s, 48 Mbits/s, 54 Mbits/s</td>
<td>RW, brate</td>
<td>brate</td>
</tr>
<tr>
<td>Physical Layer Type</td>
<td>Integer</td>
<td>ERP (Extended Rate Protocol)</td>
<td>R, phytype</td>
<td>phytype</td>
</tr>
<tr>
<td>Super Mode</td>
<td>Integer</td>
<td>enable, disable (default)</td>
<td>RW, supermode</td>
<td>supermode</td>
</tr>
<tr>
<td>Turbo Mode</td>
<td>Integer</td>
<td>enable, disable (default)</td>
<td>RW, turbomode</td>
<td>turbomode</td>
</tr>
<tr>
<td>Regulatory Domain List</td>
<td>DisplayString</td>
<td>FCC: U.S., Canada, Mexico, Argentina, Australia, ETSI: European Union (with the exception of Hungary and the Czech Republic), Brazil, China, Iceland, India, Hong Kong, Norway, Saudi Arabia, Singapore, South Korea, Switzerland, Taiwan, United Arab Emirates, TELEC: Japan</td>
<td>R, regdomain</td>
<td>regdomain</td>
</tr>
</tbody>
</table>

**Note 1:** Super Mode must be enabled on the wireless interface before Turbo Mode can be enabled.

### Wireless Distribution System (WDS) Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDS Table</td>
<td>Table</td>
<td>N/A</td>
<td>R, wdstbl</td>
<td>wdstbl</td>
</tr>
<tr>
<td>Port Index</td>
<td>Integer</td>
<td>3.1 - 3.6 (Wireless)</td>
<td>R, portindex</td>
<td>portindex</td>
</tr>
<tr>
<td>Status</td>
<td>Integer</td>
<td>enable, disable</td>
<td>RW, status</td>
<td>status</td>
</tr>
<tr>
<td>Partner MAC Address</td>
<td>PhysAddress</td>
<td>User Defined</td>
<td>RW, partnermacaddr</td>
<td>partnermacaddr</td>
</tr>
</tbody>
</table>
Wireless Interface SSID/VLAN/Profile Parameters

The Wireless Interface SSID table manages the SSID/VLAN pairs, Security Profile, and RADIUS Profiles associated to the VLAN.

For configuration examples, refer to Configure SSID (Network Name) and VLAN Pairs, and Profiles.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless Interface SSID Table</td>
<td>Table</td>
<td>N/A</td>
<td>R</td>
<td>wifssitbl</td>
</tr>
<tr>
<td>Table Index</td>
<td>Integer</td>
<td>Primary wireless interface = 3</td>
<td>R</td>
<td>index</td>
</tr>
<tr>
<td>Table Index</td>
<td>Integer</td>
<td>1 - 16 (SSID index)</td>
<td>R</td>
<td>ssidindex</td>
</tr>
<tr>
<td>SSID</td>
<td>DisplayString</td>
<td>1 - 32 characters</td>
<td>RW</td>
<td>ssid</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>VlanId</td>
<td>-1- 4094</td>
<td>RW</td>
<td>vlanid</td>
</tr>
<tr>
<td>Table Row Status</td>
<td>RowStatus</td>
<td>enable, disable delete</td>
<td>RW</td>
<td>status</td>
</tr>
<tr>
<td>SSID Authorization Status per VLAN</td>
<td>Integer</td>
<td>enable disable</td>
<td>RW</td>
<td>ssidauth</td>
</tr>
<tr>
<td>RADIUS Accounting Status per VLAN</td>
<td>Integer</td>
<td>enable disable</td>
<td>RW</td>
<td>acctstatus</td>
</tr>
<tr>
<td>MAC ACL Status per VLAN</td>
<td>Integer</td>
<td>enable disable</td>
<td>RW</td>
<td>aclstatus</td>
</tr>
<tr>
<td>Security Profile</td>
<td>Integer</td>
<td>1-32</td>
<td>RW</td>
<td>secprofile</td>
</tr>
<tr>
<td>RADIUS MAC Profile</td>
<td>Integer</td>
<td>User defined</td>
<td>RW</td>
<td>radmacprofile</td>
</tr>
<tr>
<td>RADIUS EAP Profile</td>
<td>Integer</td>
<td>User defined</td>
<td>RW</td>
<td>radeapprofile</td>
</tr>
<tr>
<td>RADIUS Accounting Profile</td>
<td>Integer</td>
<td>User defined</td>
<td>RW</td>
<td>radacctprofile</td>
</tr>
</tbody>
</table>

Wireless Distribution System (WDS) Security Table Parameters

The WDS Security Table manages WDS related security objects.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDS Security Table</td>
<td>Table</td>
<td>N/A</td>
<td>R</td>
<td>wdssectbl</td>
</tr>
<tr>
<td>Table Index</td>
<td>Integer</td>
<td>Wireless interface = 3</td>
<td>R</td>
<td>index</td>
</tr>
<tr>
<td>Security Mode</td>
<td>Integer</td>
<td>none, wep</td>
<td>RW</td>
<td>secmode</td>
</tr>
<tr>
<td>Encryption Key 01</td>
<td>User Defined</td>
<td>N/A</td>
<td>W</td>
<td>encryptkey0</td>
</tr>
</tbody>
</table>

Note 1: The appropriate key size must be configured. The access point supports 64, 128, and 152 bit encryption keys. The following table provides information on how to configure encryption keys using HEX or ASCII values.

<table>
<thead>
<tr>
<th>Key Length</th>
<th>Configuration in Hex</th>
<th>Configuration in ASCII</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 bit encryption key</td>
<td>10 characters (0-F)</td>
<td>5 alphanumeric characters</td>
</tr>
<tr>
<td>128 bit encryption key</td>
<td>26 characters (0-F)</td>
<td>13 alphanumeric characters</td>
</tr>
<tr>
<td>152 bit encryption key</td>
<td>32 characters (0-F)</td>
<td>16 alphanumeric characters</td>
</tr>
</tbody>
</table>
## Ethernet Interface Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet Interface</td>
<td>Group</td>
<td>N/A</td>
<td>R</td>
<td>ethernet</td>
</tr>
<tr>
<td>Speed</td>
<td>Integer</td>
<td>10halfduplex 10fulduplex 10autoduplex 100halfduplex 100fulduplex autohalfduplex autoautoduplex (default)</td>
<td>RW</td>
<td>etherspeed</td>
</tr>
<tr>
<td>MAC Address</td>
<td>PhyAddress</td>
<td>N/A</td>
<td>R</td>
<td>ethermacaddr</td>
</tr>
</tbody>
</table>

## Management Parameters

### Secure Management Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secure Management</td>
<td>Integer</td>
<td>enable/disable</td>
<td>RW</td>
<td>securemgmtstatus</td>
</tr>
</tbody>
</table>

## SNMP Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP</td>
<td>Group</td>
<td>N/A</td>
<td>R</td>
<td>snmp</td>
</tr>
<tr>
<td>SNMP Management Interface Bitmask</td>
<td>Interface Bitmask</td>
<td>0 or 2 = No interfaces (disable) 1 or 3 = Ethernet 4 or 6 = Wireless 5 or 7 = All interfaces (default is 7)</td>
<td>RW</td>
<td>snmpifbitmask</td>
</tr>
<tr>
<td>Read Password</td>
<td>DisplayString</td>
<td>User Defined public (default) 6 - 32 characters</td>
<td>W</td>
<td>snmprrpasswd</td>
</tr>
<tr>
<td>Read/Write Password</td>
<td>DisplayString</td>
<td>User Defined public (default) 6 - 32 characters</td>
<td>W</td>
<td>snmprrwpasswd</td>
</tr>
<tr>
<td>SNMPv3 Authentication Password</td>
<td>DisplayString</td>
<td>User Defined public (default) 6 - 32 characters</td>
<td>W</td>
<td>snmpv3authpasswd</td>
</tr>
<tr>
<td>SNMPv3 Privacy Password</td>
<td>DisplayString</td>
<td>User Defined public (default) 6 - 32 characters</td>
<td>W</td>
<td>snmpv3privpasswd</td>
</tr>
</tbody>
</table>
HTTP (web browser) Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>HTTP</strong></td>
<td>Group</td>
<td>N/A</td>
<td>R</td>
<td>http</td>
</tr>
<tr>
<td>HTTP Management Interface</td>
<td>Bitmask</td>
<td>0 or 2 = No interfaces (disable)</td>
<td>RW</td>
<td>httplibmask</td>
</tr>
<tr>
<td></td>
<td>Bitmask</td>
<td>1 or 3 = Ethernet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 or 6 = Wireless</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 or 7 = All interfaces (default is 7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTTP Password</td>
<td>DisplayString</td>
<td>User Defined 6 - 32 characters</td>
<td>W</td>
<td>httppassword</td>
</tr>
<tr>
<td>HTTP Port</td>
<td>Integer</td>
<td>User Defined Default = 80</td>
<td>RW</td>
<td>httpport</td>
</tr>
<tr>
<td>Help Link</td>
<td>DisplayString</td>
<td>User Defined</td>
<td>RW</td>
<td>httphelplink</td>
</tr>
<tr>
<td>SSL Status</td>
<td>Integer</td>
<td>enable/disable</td>
<td>RW</td>
<td>sslstatus</td>
</tr>
<tr>
<td>SSL Certificate Passphrase</td>
<td>DisplayString</td>
<td>User Defined</td>
<td>W</td>
<td>sslpassphrase</td>
</tr>
</tbody>
</table>

**NOTE**

The default path for the Help files is C:/Program Files/AirSPEED/AP541/HTML/home.htm. (Use the forward slash character ("/") rather than the backslash character ("\") when configuring the Help Link location.)

Telnet Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Telnet</strong></td>
<td>Group</td>
<td>N/A</td>
<td>R</td>
<td>telnet</td>
</tr>
<tr>
<td>Telnet Management Interface</td>
<td>Bitmask</td>
<td>0 or 2 = No interfaces (disable)</td>
<td>RW</td>
<td>tellibitmask</td>
</tr>
<tr>
<td></td>
<td>Bitmask</td>
<td>1 or 3 = Ethernet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 or 6 = Wireless</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 or 7 = All interfaces (default is 7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telnet Port</td>
<td>Integer</td>
<td>User Defined 23 (default)</td>
<td>RW</td>
<td>telport</td>
</tr>
<tr>
<td>Telnet Login Inactivity Time-out</td>
<td>Integer</td>
<td>30 – 300 seconds 60 sec (default)</td>
<td>RW</td>
<td>tellogintout</td>
</tr>
<tr>
<td>Telnet Session Idle Time-out</td>
<td>Integer</td>
<td>60 - 360000 seconds 900 sec (default)</td>
<td>RW</td>
<td>telsessiontout</td>
</tr>
</tbody>
</table>

Serial Port Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Serial</strong></td>
<td>Group</td>
<td>N/A</td>
<td>R</td>
<td>serial</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>Integer</td>
<td>2400, 4800, 9600 (default), 19200, 38400, 57600</td>
<td>RW</td>
<td>serbaudrate</td>
</tr>
<tr>
<td>Data Bits</td>
<td>Integer</td>
<td>8</td>
<td>R</td>
<td>serdatabits</td>
</tr>
<tr>
<td>Parity</td>
<td>Integer</td>
<td>none</td>
<td>R</td>
<td>serparity</td>
</tr>
<tr>
<td>Stop Bits</td>
<td>Integer</td>
<td>1</td>
<td>R</td>
<td>serstopbits</td>
</tr>
<tr>
<td>Flow Control</td>
<td>Value</td>
<td>none (default) xonxoff</td>
<td>RW</td>
<td>serflowcrtl</td>
</tr>
</tbody>
</table>
RADIUS Based Management Access Parameters

The RADIUS Based Management Access parameters allow you to enable HTTP or Telnet Radius Management Access, enable or disable local user access, and configure the local user password. The default local user ID is root and the default local user password is public. "Root" cannot be configured as a valid user for RADIUS based management access when local user access is enabled.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius Local User Status</td>
<td>Integer</td>
<td>enable disable</td>
<td>RW</td>
<td>radiocaluserstatus</td>
</tr>
<tr>
<td>Radius Local User Password</td>
<td>DisplayString</td>
<td>User Defined</td>
<td>RW</td>
<td>radiocaluserpasswd</td>
</tr>
<tr>
<td>HTTP Radius Management Access</td>
<td>Integer</td>
<td>enable disable</td>
<td>RW</td>
<td>httpradismgmtaccess</td>
</tr>
<tr>
<td>Telnet Radius Management Access</td>
<td>Integer</td>
<td>enable disable</td>
<td>RW</td>
<td>telradismgmtaccess</td>
</tr>
</tbody>
</table>

SSH Parameters

The following commands enable or disable SSH and set the SSH host key.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSH Status</td>
<td>Integer</td>
<td>enable disable</td>
<td>RW</td>
<td>sshstatus</td>
</tr>
<tr>
<td>SSH Public Host Key Fingerprint</td>
<td>DisplayString</td>
<td>AP Generated</td>
<td>RW</td>
<td>sshkeyfprint</td>
</tr>
<tr>
<td>SSH Host Key Status</td>
<td>Integer</td>
<td>create delete</td>
<td>RW</td>
<td>sshkeystatus</td>
</tr>
</tbody>
</table>

The AP SSH feature, open-SSH, confirms to the SSH protocol, and supports SSH version 2. The following SSH clients have been verified to interoperate with the AP’s server. The following table lists the clients, version number, and the website of the client.

<table>
<thead>
<tr>
<th>Clients</th>
<th>Version</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenSSH</td>
<td>V3.4-2</td>
<td><a href="http://www.openssh.com">http://www.openssh.com</a></td>
</tr>
<tr>
<td>Putty</td>
<td>Rel 0.53b</td>
<td><a href="http://www.chiark.greenend.org.uk">http://www.chiark.greenend.org.uk</a></td>
</tr>
<tr>
<td>Zoc</td>
<td>5.00</td>
<td><a href="http://www.emtec.com">http://www.emtec.com</a></td>
</tr>
<tr>
<td>Axessh</td>
<td>V2.5</td>
<td><a href="http://www.labf.com">http://www.labf.com</a></td>
</tr>
</tbody>
</table>

For key generation, only the OpenSSH client has been verified.

Auto Configuration Parameters

These parameters relate to the Auto Configuration feature which allows an AP to be automatically configured by downloading a specific configuration file from a TFTP server during the boot up process.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Configuration</td>
<td>Group</td>
<td>N/A</td>
<td>R</td>
<td>autoconfig</td>
</tr>
<tr>
<td>Auto Configuration Status</td>
<td>Integer</td>
<td>enable (default)disable</td>
<td>RW</td>
<td>autoconfigstatus</td>
</tr>
<tr>
<td>Auto Config File Name</td>
<td>DisplayString</td>
<td>User Defined</td>
<td>RW</td>
<td>autoconfigfilename</td>
</tr>
<tr>
<td>Auto Config TFTP Server IP Address</td>
<td>IpAddress</td>
<td>User Defined</td>
<td>RW</td>
<td>autoconfigTFTPaddr</td>
</tr>
</tbody>
</table>
TFTP Server Parameters

These parameters relate to upload and download commands.

When a user executes an upload and/or download Command, the specified arguments are stored in TFTP parameters for future use. If nothing is specified in the command line when issuing subsequent upload and/or download commands, the stored arguments are used.

```
<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFTP Group</td>
<td>N/A</td>
<td></td>
<td>R</td>
<td>tftp</td>
</tr>
<tr>
<td>TFTP Server IP Address</td>
<td>ipAddress</td>
<td>User Defined</td>
<td>RW</td>
<td>tftpipaddr</td>
</tr>
<tr>
<td>TFTP File Name</td>
<td>DisplayString</td>
<td>User Defined</td>
<td>RW</td>
<td>tftpfilename</td>
</tr>
<tr>
<td>TFTP File Type</td>
<td>Integer</td>
<td>img, config, bootloader, sslcertificate, sslprivatekey, sshprivatekey, sshpublickey, clibatchfile (CLI Batch File), cbflog (CLI Batch Error Log)</td>
<td>RW</td>
<td>tftpfiletype</td>
</tr>
</tbody>
</table>
```

IP Access Table Parameters

When creating table entries, you may either specify the argument name followed by argument value or simply entering the argument value. When only the argument value is specified, then enter the values in the order depicted by the following table. CLI applies default values to the omitted arguments. Due to the nature of the information, the only argument that can be omitted is the “comment” argument.

```
<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Access Table</td>
<td>Table</td>
<td>N/A</td>
<td>R</td>
<td>mgmtipaccesstbl</td>
</tr>
<tr>
<td>Table Index</td>
<td>Integer</td>
<td>User Defined</td>
<td>N/A</td>
<td>index</td>
</tr>
<tr>
<td>IP Address</td>
<td>ipAddress</td>
<td>User Defined</td>
<td>RW</td>
<td>ipaddr</td>
</tr>
<tr>
<td>IP Mask</td>
<td>ipAddress</td>
<td>User Defined</td>
<td>RW</td>
<td>ipmask</td>
</tr>
<tr>
<td>Comment (optional)</td>
<td>DisplayString</td>
<td>User Defined</td>
<td>RW</td>
<td>cmt</td>
</tr>
<tr>
<td>Status (optional)</td>
<td>Integer</td>
<td>enable (default) disable delete</td>
<td>RW</td>
<td>status</td>
</tr>
</tbody>
</table>
```

Filtering Parameters

Ethernet Protocol Filtering Parameters

```
<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet Filtering</td>
<td>Group</td>
<td>N/A</td>
<td>R</td>
<td>etherflt</td>
</tr>
<tr>
<td>Filtering Interface Bitmask</td>
<td>Interface Bitmask</td>
<td>0 or 2 = No interfaces (disable) 1 or 3 = Ethernet 4 or 6 = Wireless 5 or 7 = All interfaces (default is 7)</td>
<td>RW</td>
<td>etherfltflbfmask</td>
</tr>
<tr>
<td>Operation Type</td>
<td></td>
<td>passthru block</td>
<td>RW</td>
<td>etherfltoptype</td>
</tr>
</tbody>
</table>
```
Ethernet Filtering Table

Identify the different filters by using the table index.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet Filtering Table</td>
<td>Table</td>
<td>N/A</td>
<td>R</td>
<td>etherflttbl</td>
</tr>
<tr>
<td>Table Index</td>
<td>N/A</td>
<td>N/A</td>
<td>R</td>
<td>index</td>
</tr>
<tr>
<td>Protocol Number</td>
<td>Octet String</td>
<td>N/A</td>
<td>RW</td>
<td>protonumber</td>
</tr>
<tr>
<td>Protocol Name (optional)</td>
<td>DisplayString</td>
<td></td>
<td>RW</td>
<td>proname</td>
</tr>
<tr>
<td>Status (optional)</td>
<td>Integer</td>
<td>enable (1) disable (2) delete (3)</td>
<td>RW</td>
<td>status</td>
</tr>
</tbody>
</table>

**NOTE**

The filter Operation Type (passthru or block) applies **only** to the protocol filters that are **enabled** in this table.

Static MAC Address Filter Table

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static MAC Address Filter Table</td>
<td>Table</td>
<td>N/A</td>
<td>R</td>
<td>staticmactbl</td>
</tr>
<tr>
<td>Table Index</td>
<td>N/A</td>
<td>N/A</td>
<td>R</td>
<td>index</td>
</tr>
<tr>
<td>Static MAC Address on Wired Network</td>
<td>PhysAddress</td>
<td>User Defined</td>
<td>RW</td>
<td>wiredmacaddr</td>
</tr>
<tr>
<td>Static MAC Address Mask on Wired Network</td>
<td>PhysAddress</td>
<td>User Defined</td>
<td>RW</td>
<td>wiredmask</td>
</tr>
<tr>
<td>Static MAC Address on Wireless Network</td>
<td>PhysAddress</td>
<td>User Defined</td>
<td>RW</td>
<td>wirelessmacaddr</td>
</tr>
<tr>
<td>Static MAC Address Mask on Wireless Network</td>
<td>PhysAddress</td>
<td>User Defined</td>
<td>RW</td>
<td>wirelessmask</td>
</tr>
<tr>
<td>Comment (optional)</td>
<td>DisplayString</td>
<td>max 255 characters</td>
<td>RW</td>
<td>cmt</td>
</tr>
<tr>
<td>Status (optional)</td>
<td>Integer</td>
<td>enable (default) disable delete</td>
<td>RW</td>
<td>status</td>
</tr>
</tbody>
</table>

Proxy ARP Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxy ARP</td>
<td>Group</td>
<td>N/A</td>
<td>R</td>
<td>parp</td>
</tr>
<tr>
<td>Status</td>
<td>Integer</td>
<td>enable disable (default)</td>
<td>RW</td>
<td>parpstatus</td>
</tr>
</tbody>
</table>

IP ARP Filtering Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP ARP Filtering</td>
<td>Group</td>
<td>N/A</td>
<td>R</td>
<td>parp</td>
</tr>
<tr>
<td>Status</td>
<td>Integer</td>
<td>enable disable (default)</td>
<td>RW</td>
<td>iparpftstatus</td>
</tr>
<tr>
<td>IP Address</td>
<td>IpAddress</td>
<td>User Defined</td>
<td>RW</td>
<td>iparpftipaddr</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>IpAddress</td>
<td>User Defined</td>
<td>RW</td>
<td>iparpftsubmask</td>
</tr>
</tbody>
</table>
Broadcast Filtering Table

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadcast Filtering Table</td>
<td>Table</td>
<td>N/A</td>
<td>R</td>
<td>broadcastflttbl</td>
</tr>
<tr>
<td>Index</td>
<td>Integer</td>
<td>1-5</td>
<td>N/A</td>
<td>index</td>
</tr>
<tr>
<td>Protocol Name</td>
<td>DisplayString</td>
<td>N/A</td>
<td>R</td>
<td>protoname</td>
</tr>
<tr>
<td>Direction</td>
<td>Integer</td>
<td>ethertowireless</td>
<td>RW</td>
<td>direction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wirelessstoeither</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>both (default)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>Integer</td>
<td>enable</td>
<td>RW</td>
<td>status</td>
</tr>
<tr>
<td></td>
<td></td>
<td>disable (default)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TCP/UDP Port Filtering

The following parameters are used to enable/disable the Port filter feature.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Filter Status</td>
<td>Integer</td>
<td>enable (default)</td>
<td>RW</td>
<td>portfltstatus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>disable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TCP/UDP Port Filtering Table

The following parameters are used to configure TCP/UDP Port filters.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table Index</td>
<td>N/A</td>
<td>User Defined (there are also 4 pre-defined indices, see Port Number below for more information)</td>
<td>R</td>
<td>index</td>
</tr>
<tr>
<td>Port Type</td>
<td>Octet String</td>
<td>tcp, udp, tcp/udp</td>
<td>RW</td>
<td>porttype</td>
</tr>
<tr>
<td>Port Number</td>
<td>Octet String</td>
<td>User Defined (there are also 4 pre-defined protocols: Index 1: NetBios Name Service – 137, Index 2: NetBios Datagram Service – 138, Index 3: NetBios Session Service – 139, Index 4: SNMP Service – 161)</td>
<td>RW</td>
<td>portnum</td>
</tr>
<tr>
<td>Protocol Name</td>
<td>DisplayString</td>
<td>User Defined (there are also 4 pre-defined protocols, see Port Number above)</td>
<td>RW</td>
<td>proname</td>
</tr>
<tr>
<td>Interface Bitmask</td>
<td>Integer/32</td>
<td>0 or 2 = No interfaces (disable) 1 or 3 = Ethernet 4 or 6 = Wireless 5 or 7 = all interfaces (default is 7)</td>
<td>RW</td>
<td>ifbitmask</td>
</tr>
<tr>
<td>Status (optional)</td>
<td>Integer</td>
<td>enable (default for new entries) disable (default for pre-defined entries) delete</td>
<td>RW</td>
<td>status</td>
</tr>
</tbody>
</table>
Alarms Parameters

SNMP Table Host Table Parameters
When creating table entries, specify the argument name followed by argument value. CLI applies default values to the omitted arguments. Due to the nature of the information, the only argument that can be omitted is the "comment" argument.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP Trap Host Table</td>
<td>Table</td>
<td>N/A</td>
<td>R</td>
<td>annmpraphosttbl</td>
</tr>
<tr>
<td>Table Index</td>
<td>Integer</td>
<td>User Defined</td>
<td>N/A</td>
<td>index</td>
</tr>
<tr>
<td>IP Address</td>
<td>ipAddress</td>
<td>User Defined</td>
<td>RW</td>
<td>ipaddr</td>
</tr>
<tr>
<td>Password</td>
<td>DisplayString</td>
<td>User Defined (up to 64 characters)</td>
<td>W</td>
<td>passwd</td>
</tr>
<tr>
<td>Comment (optional)</td>
<td>DisplayString</td>
<td>User Defined (up to 254 characters)</td>
<td>RW</td>
<td>cmt</td>
</tr>
<tr>
<td>Status (optional)</td>
<td>Integer</td>
<td>enable (default) disable delete</td>
<td>RW</td>
<td>status</td>
</tr>
</tbody>
</table>

Syslog Parameters
The following parameters configure the Syslog settings.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syslog</td>
<td>Group</td>
<td>N/A</td>
<td>R</td>
<td>syslog</td>
</tr>
<tr>
<td>Syslog Status</td>
<td>Integer</td>
<td>enable disable (default)</td>
<td>RW</td>
<td>syslogstatus</td>
</tr>
<tr>
<td>Syslog Port</td>
<td>Octet</td>
<td>514</td>
<td>R</td>
<td>syslogport</td>
</tr>
<tr>
<td>Syslog Lowest Priority Logged</td>
<td>Integer</td>
<td>1 – 7 1 = LOG_ALERT 2 = LOG_CRIT 3 = LOG_ERR 4 = LOG_WARNING 5 = LOG_NOTICE 6 = LOG_INFO (default) 7 = LOG_DEBUG</td>
<td>RW</td>
<td>syslogpritolg</td>
</tr>
<tr>
<td>Heartbeat Status</td>
<td>Integer</td>
<td>enable (1) disable (2) (default)</td>
<td>RW</td>
<td>sysloghbstatus</td>
</tr>
<tr>
<td>Heartbeat Interval (seconds)</td>
<td>Integer</td>
<td>1 – 604800 seconds; 900 sec. (default)</td>
<td>RW</td>
<td>sysloghbinterval</td>
</tr>
</tbody>
</table>

**NOTE**
When Heartbeat is enabled, the AP periodically sends a message to the Syslog server to indicate that it is active. The frequency with which the heartbeat message is sent depends upon the setting of the Heartbeat Interval.

Syslog Host Table
The table described below configures the Syslog hosts that will receive message from the AP. You can configure up to ten Syslog hosts.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syslog Host Table</td>
<td>Table</td>
<td>N/A</td>
<td>R</td>
<td>sysloghosttbl</td>
</tr>
<tr>
<td>Table Index</td>
<td>Integer</td>
<td>1 – 10</td>
<td>N/A</td>
<td>index</td>
</tr>
<tr>
<td>IP Address</td>
<td>ipAddress</td>
<td>User Defined</td>
<td>RW</td>
<td>ipaddr</td>
</tr>
<tr>
<td>Comment (optional)</td>
<td>DisplayString</td>
<td>User Defined</td>
<td>RW</td>
<td>cmt</td>
</tr>
<tr>
<td>Status (optional)</td>
<td>Integer</td>
<td>enable disable delete</td>
<td>RW</td>
<td>status</td>
</tr>
</tbody>
</table>
Bridge Parameters

Spanning Tree Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning Tree Group</td>
<td>N/A</td>
<td>R stp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spanning Tree Status</td>
<td>Integer</td>
<td>enable (default) disable</td>
<td>RW</td>
<td>stpstatus</td>
</tr>
<tr>
<td>Bridge Priority</td>
<td>Integer</td>
<td>0 – 65535 32768 (default)</td>
<td>RW</td>
<td>stppriority</td>
</tr>
<tr>
<td>Maximum Age</td>
<td>Integer</td>
<td>600 – 4000 (in 0.01 sec intervals; i.e., 6 to 40 seconds) 2000 (default)</td>
<td>RW</td>
<td>stpmaxage</td>
</tr>
<tr>
<td>Hello Time</td>
<td>Integer</td>
<td>100 – 1000 (in 0.01 sec intervals; i.e., 1 to 10 seconds) 200 (default)</td>
<td>RW</td>
<td>stphellotime</td>
</tr>
<tr>
<td>Forward Delay</td>
<td>Integer</td>
<td>400 – 3000 (in 0.01 sec intervals; i.e., 4 to 30 seconds) 1500 (default)</td>
<td>RW</td>
<td>stpfwddelay</td>
</tr>
</tbody>
</table>

Spanning Tree Priority and Path Cost Table

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning Tree Table</td>
<td>Table</td>
<td>N/A</td>
<td>R stpbl</td>
<td></td>
</tr>
<tr>
<td>Table Index (Port)</td>
<td>N/A</td>
<td>1 – 15</td>
<td>R</td>
<td>index</td>
</tr>
<tr>
<td>Priority</td>
<td>Integer</td>
<td>0 – 255 128 (default)</td>
<td>RW</td>
<td>priority</td>
</tr>
<tr>
<td>Path Cost</td>
<td>Integer</td>
<td>1 – 65535 100 (default)</td>
<td>RW</td>
<td>pathcost</td>
</tr>
<tr>
<td>State</td>
<td>Integer</td>
<td>disable blocking listening learning forwarding broken</td>
<td>R</td>
<td>state</td>
</tr>
<tr>
<td>Status</td>
<td>Integer</td>
<td>enable disable</td>
<td>RW</td>
<td>status</td>
</tr>
</tbody>
</table>

Storm Threshold Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storm Threshold</td>
<td>Group</td>
<td>N/A</td>
<td>N/A</td>
<td>atmthres</td>
</tr>
<tr>
<td>Broadcast Threshold</td>
<td>Integer</td>
<td>0 – 255 packets/sec (default is 0)</td>
<td>RW</td>
<td>atmbrdthres</td>
</tr>
<tr>
<td>Multicast Threshold</td>
<td>Integer</td>
<td>0 – 255 packets/sec (default is 0)</td>
<td>RW</td>
<td>atmmultithres</td>
</tr>
</tbody>
</table>

Storm Threshold Table

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storm Threshold Table</td>
<td>Table</td>
<td>N/A</td>
<td>R stpbl</td>
<td></td>
</tr>
<tr>
<td>Table Index</td>
<td>Integer</td>
<td>1 = Ethernet 3 = Wireless</td>
<td>R</td>
<td>index</td>
</tr>
<tr>
<td>Broadcast Threshold</td>
<td>Integer</td>
<td>0 – 255 packets/sec (default is 0)</td>
<td>RW</td>
<td>bcast</td>
</tr>
<tr>
<td>Multicast Threshold</td>
<td>Integer</td>
<td>0 – 255 packets/sec (default is 0)</td>
<td>RW</td>
<td>mcast</td>
</tr>
</tbody>
</table>
Intra BSS Subscriber Blocking

The following parameters control the Intra BSS traffic feature, which prevents wireless clients associated with the same AP from communicating with each other:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra BSS Traffic</td>
<td>Group</td>
<td>N/A</td>
<td>R</td>
<td>intrabss</td>
</tr>
<tr>
<td>Intra BSS Traffic Operation</td>
<td>Integer</td>
<td>passthru (default)</td>
<td>RW</td>
<td>intrabssotype</td>
</tr>
</tbody>
</table>

Packet Forwarding Parameters

The following parameters control the Packet Forwarding feature, which redirects wireless traffic to a specific MAC address:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet Forwarding MAC Address</td>
<td>Group</td>
<td>N/A</td>
<td>R</td>
<td>pktfwd</td>
</tr>
<tr>
<td>Packet Forwarding MAC Address</td>
<td>MacAddress</td>
<td>User Defined</td>
<td>RW</td>
<td>pktfwdmacaddr</td>
</tr>
<tr>
<td>Packet Forwarding Status</td>
<td>Integer</td>
<td>enable (default)</td>
<td>RW</td>
<td>pktfwdstatus</td>
</tr>
<tr>
<td>Packet Forwarding Interface Port</td>
<td>Integer</td>
<td>0 (any) (default)</td>
<td>RW</td>
<td>pktfwdif</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 (Ethernet)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (WDS 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 (WDS 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 (WDS 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 (WDS 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 (WDS 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 (WDS 6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RADIUS Parameters

General RADIUS Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADIUS</td>
<td>Group</td>
<td>N/A</td>
<td>R</td>
<td>radius</td>
</tr>
<tr>
<td>Client Invalid Server Address</td>
<td>Counter32</td>
<td>N/A</td>
<td>R</td>
<td>radcliinvsvradd</td>
</tr>
</tbody>
</table>

RADIUS Server Configuration Parameters

**NOTE**

Use a server name only if you have enabled the DNS Client functionality. See DNS Client for RADIUS Name Resolution.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADIUS Authentication</td>
<td>Table</td>
<td>N/A</td>
<td>R</td>
<td>radiusbl</td>
</tr>
<tr>
<td>Table Index (Profile Index)</td>
<td>Integer</td>
<td>N/A</td>
<td>R</td>
<td>index</td>
</tr>
<tr>
<td>Primary/Secondary Index</td>
<td>Integer</td>
<td>Primary (1) Secondary (2)</td>
<td>R</td>
<td>subindex</td>
</tr>
<tr>
<td>Status</td>
<td>Integer</td>
<td>enable (default)</td>
<td>RW</td>
<td>status</td>
</tr>
<tr>
<td>Server Address Format</td>
<td>Integer</td>
<td>Ipaddr</td>
<td>RW</td>
<td>seraddrfmt</td>
</tr>
<tr>
<td>Server IP Address or Name</td>
<td>IpAddress</td>
<td>User defined (enter an IP address if</td>
<td>RW</td>
<td>ipaddr</td>
</tr>
<tr>
<td></td>
<td>DisplayString</td>
<td>seraddrfmt is ipaddr or a name if set to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name; up to 254 characters if using a name)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port (optional)</td>
<td>Integer</td>
<td>User Defined 1812 (default)</td>
<td>RW</td>
<td>port</td>
</tr>
</tbody>
</table>
Security Parameters

MAC Access Control Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Address Control</td>
<td>Group</td>
<td>N/A</td>
<td>R</td>
<td>macacl</td>
</tr>
<tr>
<td>Status</td>
<td>Integer</td>
<td>enable disable (default)</td>
<td>RW</td>
<td>aclstatus</td>
</tr>
<tr>
<td>Operation Type</td>
<td>Integer</td>
<td>passthru block</td>
<td>RW</td>
<td>macacloptype</td>
</tr>
</tbody>
</table>

MAC Access Control Table

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Address Control Table</td>
<td>Table</td>
<td>N/A</td>
<td>R</td>
<td>macacitbl</td>
</tr>
<tr>
<td>Table Index</td>
<td>N/A</td>
<td>N/A</td>
<td>R</td>
<td>index</td>
</tr>
<tr>
<td>MAC Address</td>
<td>PhysAddress</td>
<td>User Defined max 254 characters</td>
<td>RW</td>
<td>macaddr</td>
</tr>
<tr>
<td>Status (optional)</td>
<td>DisplayString</td>
<td>User Defined max 254 characters</td>
<td>RW</td>
<td>cmt</td>
</tr>
<tr>
<td>Status (optional)</td>
<td>Integer</td>
<td>enable delete disable delete</td>
<td>RW</td>
<td>status</td>
</tr>
</tbody>
</table>

Rogue Scan Configuration Table

The Rogue Scan Configuration Table allows you to enable or disable Rogue Scan and configure the scanning parameters.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rogue Scan Configuration Table</td>
<td>Table</td>
<td>N/A</td>
<td>R</td>
<td>rscantbl</td>
</tr>
<tr>
<td>Rogue Scan Mode</td>
<td>Integer</td>
<td>Bkscan (1) Contscan (2)</td>
<td>RW</td>
<td>mode</td>
</tr>
<tr>
<td>Rogue Scan Cycle Time</td>
<td>Integer</td>
<td>1-1440</td>
<td>RW</td>
<td>cycletime</td>
</tr>
<tr>
<td>Rogue Scan Configuration Table Index</td>
<td>Integer</td>
<td>3 or 4</td>
<td>RW</td>
<td>index</td>
</tr>
<tr>
<td>Rogue Scan Status</td>
<td>Integer</td>
<td>enable disable</td>
<td>RW</td>
<td>status</td>
</tr>
</tbody>
</table>
Hardware Configuration Reset

The Hardware Configuration Reset commands allows you to enable or disable the feature and to change the password to be used for configuration reset during boot up.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Configuration Reset Status</td>
<td>Integer</td>
<td>enable (1) disable (2)</td>
<td>R</td>
<td>hwconfigresetstatus</td>
</tr>
<tr>
<td>Configuration Reset Password</td>
<td>DisplayString</td>
<td>User Defined</td>
<td>RW</td>
<td>configresetpasswd</td>
</tr>
</tbody>
</table>

VLAN/SSID Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN</td>
<td>Group N/A</td>
<td>enable disable (default)</td>
<td>R</td>
<td>vlan</td>
</tr>
<tr>
<td>Status</td>
<td>Integer</td>
<td>enable disable</td>
<td>RW</td>
<td>vlanstatus</td>
</tr>
<tr>
<td>Management ID</td>
<td>VlanId</td>
<td>-1 (untagged) or 1-4094</td>
<td>RW</td>
<td>vlanmgmtid</td>
</tr>
</tbody>
</table>

Security Profile Table

The Security Profile Table allows you to configure security profiles. A maximum of 16 security profiles are supported per wireless interface.

Each security profile can be enabled and configured in one or more security modes (None Secure Station, WEP Station, 802.1x Station, WPA Station, WPA-PSK Station, 802.11i (WPA2), 802.11i-PSK (WPA2-PSK)). The WEP/PSK parameters are separately configurable for each security mode. Refer to the command examples below for more information.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Profile Table</td>
<td>Table N/A</td>
<td></td>
<td>R</td>
<td>secprofiletbl</td>
</tr>
<tr>
<td>Table Index</td>
<td>Integer</td>
<td>1.1 to 32.5</td>
<td>R</td>
<td>index</td>
</tr>
<tr>
<td>Security Mode</td>
<td>Integer</td>
<td>nonsecsta wepsta 802.1xsta wpa wpa2 psk</td>
<td>R</td>
<td>secmode</td>
</tr>
<tr>
<td>Authentication Mode</td>
<td>Integer</td>
<td>none 802.1x psk</td>
<td>RW</td>
<td>authmode</td>
</tr>
<tr>
<td>Cipher</td>
<td>Integer</td>
<td>none wep tkp aes</td>
<td>R</td>
<td>ciphersuite</td>
</tr>
<tr>
<td>Encryption Key 0 (^1)</td>
<td>Integer</td>
<td>User defined</td>
<td>W</td>
<td>encryptionkey0</td>
</tr>
<tr>
<td>Encryption Key 1 (^1)</td>
<td>Integer</td>
<td>User defined</td>
<td>W</td>
<td>encryptionkey1</td>
</tr>
<tr>
<td>Encryption Key 2 (^1)</td>
<td>Integer</td>
<td>User defined</td>
<td>W</td>
<td>encryptionkey2</td>
</tr>
<tr>
<td>Encryption Key 3 (^1)</td>
<td>Integer</td>
<td>User defined</td>
<td>W</td>
<td>encryptionkey3</td>
</tr>
<tr>
<td>Encryption Transmit Key</td>
<td>Integer</td>
<td>0-3</td>
<td>RW</td>
<td>encryptkeytx</td>
</tr>
<tr>
<td>Encryption Key Length</td>
<td>Integer</td>
<td>64, 128, or 152</td>
<td>RW</td>
<td>encryptkeylength</td>
</tr>
<tr>
<td>WPA PSK Value</td>
<td>Octet</td>
<td>Size 32</td>
<td>W</td>
<td>pskkey</td>
</tr>
<tr>
<td>WPA PSK Pass Phrase</td>
<td>Integer</td>
<td>8-63 characters</td>
<td>W</td>
<td>passphrase</td>
</tr>
</tbody>
</table>

Note 1: The appropriate key size must be configured. The access point supports 64, 128, and 152 bit encryption keys. The following table provides information on how to configure encryption keys using HEX or ASCII values.

<table>
<thead>
<tr>
<th>Key Length</th>
<th>Configuration in Hex</th>
<th>Configuration in ASCII</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 bit encryption key</td>
<td>10 characters (0-F)</td>
<td>5 alphanumeric characters</td>
</tr>
<tr>
<td>128 bit encryption key</td>
<td>26 characters (0-F)</td>
<td>13 alphanumeric characters</td>
</tr>
<tr>
<td>152 bit encryption key</td>
<td>32 characters (0-F)</td>
<td>16 alphanumeric characters</td>
</tr>
</tbody>
</table>
Command Syntax and Examples of Configuring Security Profiles:

Configuring a Security Profile with Non Secure Security Mode
set secprofiletbl <index> secmode nonsecure status enable
Example:
[Device-Name]> set secprofiletbl 2 secmode nonsecure status enable

Configuring a Security Profile with WEP Security Mode
set secprofiletbl <index> secmode wep encryptkey0 <value> encryptkeylength <value> encryptkeytx <value> status enable
Example:
[Device-Name]> set secprofiletbl 3 secmode wep encryptkey0 12345 encryptkeylength 1 encryptkeytx 0 status enable

Configuring a Security Profile with 802.1x Security Mode
set secprofiletbl <index> secmode 802.1x rekeyint 900 status enable
Example:
[Device-Name]> set secprofiletbl 4 secmode 802.1x rekeyint 900 status enable

Configuring a Security Profile with WPA Security Mode
set secprofiletbl <index> secmode wpa rekeyint 900 status enable
Example:
[Device-Name]> set secprofiletbl 5 secmode wpa rekeyint 900 status enable

Configuring a Security Profile with WPA-PSK Security Mode
set secprofiletbl <index> secmode wpa-psk passphrase <value> status enable
Example:
[Device-Name]> set secprofiletbl 6 secmode wpa-psk passphrase 12345678 status enable

Configuring a Security Profile with 802.11i (WPA2) Security Mode
set secprofiletbl <index> secmode 802.11i rekeyint <value> status enable
Example:
[Device-Name]> set secprofiletbl 7 secmode 802.11i rekeyint 900 status enable

Configuring a Security Profile with 802.11i-PSK (WPA2 PSK) Security Mode
set secprofiletbl <index> secmode 802.11i-psk passphrase <value> status enable
Example:
[Device-Name]> set secprofiletbl 8 secmode 802.11i-psk passphrase 12345678 status enable
Other Parameters

IAPP Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAPP</td>
<td>Group</td>
<td>N/A</td>
<td>R</td>
<td>iapp</td>
</tr>
<tr>
<td>IAPP Status</td>
<td>Integer</td>
<td>enable (default) disable</td>
<td>RW</td>
<td>iappstatus</td>
</tr>
<tr>
<td>Periodic Announce Interval (seconds)</td>
<td>Integer</td>
<td>80 120 (default) 160 200</td>
<td>RW</td>
<td>iappannint</td>
</tr>
<tr>
<td>Announce Response Time</td>
<td>Integer</td>
<td>2 seconds</td>
<td>R</td>
<td>iappannresp</td>
</tr>
<tr>
<td>Handover Time-out</td>
<td>Integer</td>
<td>410 ms 512 ms (default) 614 ms 717 ms 819 ms</td>
<td>RW</td>
<td>iapphandout</td>
</tr>
<tr>
<td>Max. Handover Retransmissions</td>
<td>Integer</td>
<td>1 - 4 (default) 4</td>
<td>RW</td>
<td>iapphandretx</td>
</tr>
</tbody>
</table>

### NOTE

These parameters configure the Inter Access Point Protocol (IAPP) for roaming. Leave these settings at their default value unless a technical representative asks you to change them.

**Wi-Fi Multimedia (WMM)/Quality of Service (QoS) parameters**

The Wi-Fi Multimedia commands enable and configure WMM/QoS parameters per wireless interface. The following commands are part of the Wireless Interface Properties table.

**Enabling QoS**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS Status</td>
<td>Object Status</td>
<td>enable disable (default)</td>
<td>RW</td>
<td>qosstatus</td>
</tr>
<tr>
<td>QoS Maximum Medium Threshold</td>
<td>Integer</td>
<td>50 - 90</td>
<td>RW</td>
<td>qosmaximummediumthreshold</td>
</tr>
</tbody>
</table>
Configuring QoS Policies

The QoS group manages the QoS policies:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS Group</td>
<td>Group</td>
<td>N/A</td>
<td>N/A</td>
<td>qos</td>
</tr>
<tr>
<td>QoS Policy Table</td>
<td>Table</td>
<td>N/A</td>
<td>N/A</td>
<td>qospolicytbl</td>
</tr>
<tr>
<td>Table Primary Index</td>
<td>Integer</td>
<td>N/A</td>
<td>R</td>
<td>index</td>
</tr>
<tr>
<td>Table Secondary Index</td>
<td>Integer</td>
<td>N/A</td>
<td>R</td>
<td>secindex</td>
</tr>
<tr>
<td>Policy Name</td>
<td>Display String</td>
<td>0 - 32 characters</td>
<td>RW</td>
<td>policymain</td>
</tr>
<tr>
<td>Policy Type</td>
<td>Integer</td>
<td>inlayer2, inlayer3,</td>
<td>RW</td>
<td>type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>outlayer2, outlayer3,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>spectralink</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Priority Mapping Index</td>
<td>Integer</td>
<td>See Note.</td>
<td>RW</td>
<td>mapindex</td>
</tr>
<tr>
<td>Apply QoS Marking</td>
<td>Object Status</td>
<td>enable, disable</td>
<td>RW</td>
<td>markstatus</td>
</tr>
<tr>
<td>Table Row Status</td>
<td>Row Status</td>
<td>enable, disable</td>
<td>RW</td>
<td>status</td>
</tr>
</tbody>
</table>

**NOTE**

A priority mapping needs to be specified for a QoS Policy. The priority mapping depends on the type of policy configured. For Layer 2 policy types (inbound or outbound) a mapping index from the 802.1p to 802.1D table should be specified. For Layer 3 policy types (inbound or outbound) a mapping index from the IP DSCP to 802.1D table should be specified. The mapping index, in both cases, depends on the number of mappings configured by the user. For SpectraLink policy type a mapping is not required.

Specifying the Mapping between 802.1p and 802.1D Priorities

The QoS 802.1p to 802.1D Mapping Table specifies the mapping between 802.1p and 802.1D priorities.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS 802.1p to 802.1D Mapping Table</td>
<td>Table</td>
<td>N/A</td>
<td>N/A</td>
<td>qosp1pto1dtabl</td>
</tr>
<tr>
<td>Table Index (Primary Index)</td>
<td>Integer</td>
<td>0 - 7</td>
<td>R</td>
<td>index</td>
</tr>
<tr>
<td>802.1D Priority (Secondary Index)</td>
<td>Integer</td>
<td>0 - 7</td>
<td>R</td>
<td>1dpriority</td>
</tr>
<tr>
<td>802.1p Priority</td>
<td>Integer</td>
<td>0 - 7</td>
<td>RW</td>
<td>1ppriority</td>
</tr>
<tr>
<td>Table Row Status</td>
<td>Row Status</td>
<td>enable, disable</td>
<td>RW</td>
<td>status</td>
</tr>
</tbody>
</table>

Specifying the Mapping between IP Precedence/DSCP Ranges and 802.1D Priorities

The QoS IP DSCP to 802.1D Mapping Table specifies the mapping between IP Precedence/DSCP Ranges and 802.1D priorities.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS IP DSCP to 802.1D Mapping Table</td>
<td>Table</td>
<td>N/A</td>
<td>N/A</td>
<td>qospdscpto1dtabl</td>
</tr>
<tr>
<td>Table Index (Primary Index)</td>
<td>Integer</td>
<td>0 - 7</td>
<td>R</td>
<td>index</td>
</tr>
<tr>
<td>IP DSCP Lower Limit</td>
<td>Integer</td>
<td>0 - 62</td>
<td>RW</td>
<td>dscplower</td>
</tr>
<tr>
<td>IP DSCP Upper Limit</td>
<td>Integer</td>
<td>1 - 63</td>
<td>RW</td>
<td>dscupper</td>
</tr>
<tr>
<td>Table Row Status</td>
<td>Row Status</td>
<td>enable, disable</td>
<td>RW</td>
<td>status</td>
</tr>
</tbody>
</table>
QoS Enhanced Distributed Channel Access (EDCA) Parameters

The following commands configure the client (STA) and AP Enhanced Distributed Channel Access (EDCA) parameters.

The EDCA parameter set provides information needed by the client stations for proper QoS operation during the wireless contention period. These parameters are used by the QoS-enabled AP to establish policy, to change policies when accepting new stations or new traffic, or to adapt to changes in the offered load. The EDCA parameters assign priorities to traffic types, such that higher priority packets gain access to the wireless medium more frequently than lower priority packets.

NOTE

We have defined default recommended values for EDCA parameters; we recommend not modifying EDCA parameters unless strictly necessary.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDCA Table</td>
<td>Table</td>
<td>N/A</td>
<td>N/A</td>
<td>qosedcatbl</td>
</tr>
<tr>
<td>Table Index</td>
<td>Integer</td>
<td>1 - 4</td>
<td>R</td>
<td>index</td>
</tr>
<tr>
<td>CWmin</td>
<td>Integer</td>
<td>0 - 255</td>
<td>RW</td>
<td>cwmin</td>
</tr>
<tr>
<td>CWmax</td>
<td>Integer</td>
<td>0 - 65535</td>
<td>RW</td>
<td>cwmax</td>
</tr>
<tr>
<td>AIFSN</td>
<td>Integer</td>
<td>2 - 15</td>
<td>RW</td>
<td>aifsn</td>
</tr>
<tr>
<td>Tx OP Limit</td>
<td>Integer</td>
<td>0 - 65535</td>
<td>RW</td>
<td>txoplimit</td>
</tr>
<tr>
<td>MSDU Lifetime</td>
<td>Integer</td>
<td>0 - 500</td>
<td>RW</td>
<td>msdulifetime</td>
</tr>
<tr>
<td>AC Mandatory</td>
<td>Truth Value</td>
<td>true false</td>
<td>RW</td>
<td>acmandatory</td>
</tr>
<tr>
<td>QAP EDCA Table</td>
<td>Table</td>
<td>N/A</td>
<td>N/A</td>
<td>qosqapedcatbl</td>
</tr>
<tr>
<td>Table Index</td>
<td>Integer</td>
<td>1 - 4</td>
<td>R</td>
<td>index</td>
</tr>
<tr>
<td>CWmin</td>
<td>Integer</td>
<td>0 - 255</td>
<td>RW</td>
<td>cwmin</td>
</tr>
<tr>
<td>CWmax</td>
<td>Integer</td>
<td>0 - 65535</td>
<td>RW</td>
<td>cwmax</td>
</tr>
<tr>
<td>AIFSN</td>
<td>Integer</td>
<td>2 - 15</td>
<td>RW</td>
<td>aifsn</td>
</tr>
<tr>
<td>Tx OP Limit</td>
<td>Integer</td>
<td>0 - 65535</td>
<td>RW</td>
<td>txoplimit</td>
</tr>
<tr>
<td>MSDU Lifetime</td>
<td>Integer</td>
<td>0 - 500</td>
<td>RW</td>
<td>msdulifetime</td>
</tr>
<tr>
<td>AC Mandatory</td>
<td>Truth Value</td>
<td>true false</td>
<td>RW</td>
<td>acmandatory</td>
</tr>
</tbody>
</table>

Defining the QoS Policy used for a Wireless Interface SSID

The QoS Policy object configures the QoS policy to be used per wireless interface SSID. This object is part of the Wireless Interface SSID Table; the CLI command for this table is "wifssidtbl"

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Values</th>
<th>Access</th>
<th>CLI Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS Policy</td>
<td>Integer</td>
<td>See Note.</td>
<td>RW</td>
<td>qosspolicy</td>
</tr>
</tbody>
</table>

NOTE

A QoS Policy number needs to be specified in the SSID table. This depends on the QoS policies configured by the user. Once the user has configured QoS policies, the user should specify the policy to be used for that SSID.
CLI Batch File

A CLI Batch file is a user-editable file that lists a series of CLI set commands, that can be uploaded to the Access Point to change its configuration. The Access Point executes the CLI commands specified in the CLI Batch file after upload and the configuration gets changed accordingly. A CLI Batch file can also be used for Auto Configuration.

The CLI Batch file does not replace the existing LTV format configuration file, which continues to define the configuration of the AP.

The CLI Batch file contains a list of CLI commands that the AP will execute. The AP performs the commands in the file immediately after the file is uploaded to the AP manually or during Auto Configuration. The AP parses the file and executes the CLI commands. Commands that do not require a reboot take effect immediately, while commands that require a reboot (typically commands affecting a wireless interface) will take effect after reboot.

Auto Configuration and the CLI Batch File

The Auto Configuration feature allows download of the LTV format configuration file or the CLI Batch file. The AP detects whether the file uploaded is LTV format or a CLI Batch file. If the AP detects a CLI Batch file (a file with extension .cli), the AP executes the file immediately.

The AP will reboot after executing the CLI Batch file. Auto Configuration will not result in repeated reboots if the CLI Batch file contains rebootable parameters.

CLI Batch File Format and Syntax

The CLI Batch file must be named with a .cli extension to be recognized by the AP. The maximum file size allowed is 100 Kbytes, and files with larger sizes cannot be uploaded to the AP. The CLI commands supported in the CLI Batch File are a subset of the legal AP CLI commands.

The follow commands are supported:

- Set commands
- Reboot command (the reboot command ignores the argument (time))

Each command must be separated by a new line.

> NOTE

The following commands are not supported: Show command, Debug command, Undebug command, Upload command, Download command, Passwd command, Kill command, and the Exit, Quit, and Done commands.

Sample CLI Batch File

The following is a sample CLI Batch File.

```
set sysname system1
set sysloc newyork
set sysctname contact1
set sysctphone 1234567890
set sysctemail email@domain.com
set ipaddr 11.0.0.66
set ipaddrtype static
set ipsubmask 255.255.255.0
set ipgw 11.0.0.1
set wif 4 autochannel disable
set wif 4 mode 1
set syslogstatus enable
reboot
```

Figure A-18  Sample CLI Batch File
Reboot Behavior

When a CLI Batch file contains a reboot command, the reboot will occur only after the entire CLI Batch file has been executed.

There are two methods of uploading the CLI Batch File:

- Upload
- Upload and reboot (this option is to be used for a CLI Batch file containing the configuration parameters that require a reboot)

CLI Batch File Error Log

If there is any error during the execution of the CLI Batch file, the AP will stop executing the file. The AP generates traps for all errors and each trap contains the following information:

- Start of execution
- Original filename of the uploaded file
- End of execution (along with the status of execution)
- Line number and description of failures that occurred during execution

The AP logs all the errors during execution and stores them in the Flash memory in a CLI Batch File Error Log named “CBFERR.LOG”. The CLI Batch File Error Log can be downloaded though TFTP, HTTP, or CLI file transfer to a specified host.
### ASCII Character Chart

You can configure WEP Encryption Keys in either Hexadecimal or ASCII format. Hexadecimal digits are 0-9 and A-F (not case sensitive). ASCII characters are 0-9, A-F, a-f (case sensitive), and punctuation marks. Each ASCII character corresponds to two hexadecimal digits.

The table below lists the ASCII characters that you can use to configure WEP Encryption Keys. It also lists the Hexadecimal equivalent for each ASCII character.

<table>
<thead>
<tr>
<th>ASCII Character</th>
<th>Hex Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>21</td>
<td>9</td>
<td>39</td>
<td>Q</td>
<td>51</td>
<td>i</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>22</td>
<td>:</td>
<td>3A</td>
<td>R</td>
<td>52</td>
<td>j</td>
<td>6A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>23</td>
<td>;</td>
<td>3B</td>
<td>S</td>
<td>53</td>
<td>k</td>
<td>6B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>24</td>
<td>&lt;</td>
<td>3C</td>
<td>T</td>
<td>54</td>
<td>l</td>
<td>6C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>25</td>
<td>=</td>
<td>3D</td>
<td>U</td>
<td>55</td>
<td>m</td>
<td>6D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&amp;</td>
<td>26</td>
<td>&gt;</td>
<td>3E</td>
<td>V</td>
<td>56</td>
<td>n</td>
<td>6E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'</td>
<td>27</td>
<td>?</td>
<td>3F</td>
<td>W</td>
<td>57</td>
<td>o</td>
<td>6F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(</td>
<td>28</td>
<td>@</td>
<td>40</td>
<td>X</td>
<td>58</td>
<td>p</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>)</td>
<td>29</td>
<td>A</td>
<td>41</td>
<td>Y</td>
<td>59</td>
<td>q</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>2A</td>
<td>B</td>
<td>42</td>
<td>Z</td>
<td>5A</td>
<td>r</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>2B</td>
<td>C</td>
<td>43</td>
<td>[</td>
<td>5B</td>
<td>s</td>
<td>73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>,</td>
<td>2C</td>
<td>D</td>
<td>44</td>
<td>\</td>
<td>5C</td>
<td>t</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>2D</td>
<td>E</td>
<td>45</td>
<td>)</td>
<td>5D</td>
<td>u</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>2E</td>
<td>F</td>
<td>46</td>
<td>^</td>
<td>5E</td>
<td>v</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/</td>
<td>2F</td>
<td>G</td>
<td>47</td>
<td>_</td>
<td>5F</td>
<td>w</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>30</td>
<td>H</td>
<td>48</td>
<td>'</td>
<td>60</td>
<td>x</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>31</td>
<td>I</td>
<td>49</td>
<td>a</td>
<td>61</td>
<td>y</td>
<td>79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>J</td>
<td>4A</td>
<td>b</td>
<td>62</td>
<td>z</td>
<td>7A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>33</td>
<td>K</td>
<td>4B</td>
<td>c</td>
<td>63</td>
<td>{</td>
<td>7B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>34</td>
<td>L</td>
<td>4C</td>
<td>d</td>
<td>64</td>
<td></td>
<td></td>
<td>7C</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>35</td>
<td>M</td>
<td>4D</td>
<td>e</td>
<td>65</td>
<td>)</td>
<td>7D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>N</td>
<td>4E</td>
<td>f</td>
<td>66</td>
<td>~</td>
<td>7E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>37</td>
<td>O</td>
<td>4F</td>
<td>g</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>38</td>
<td>P</td>
<td>50</td>
<td>h</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Specifications

- Software Features
- Hardware Specifications for the SYSTIMAX AirSPEED AP541
- Radio Specifications

Software Features
The tables below list the software features available on the AirSPEED AP541.
- Number of Stations per BSS
- Management Functions
- Advanced Bridging Functions
- Medium Access Control (MAC) Functions
- Security Functions
- Network Functions

Number of Stations per BSS

<table>
<thead>
<tr>
<th>Feature</th>
<th>Supported by AirSPEED AP541</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without encryption</td>
<td>up to 64</td>
</tr>
<tr>
<td>With WEP encryption</td>
<td>up to 64</td>
</tr>
<tr>
<td>With 802.1x Authentication</td>
<td>up to 64</td>
</tr>
<tr>
<td>With WPA</td>
<td>up to 27</td>
</tr>
</tbody>
</table>

Management Functions

<table>
<thead>
<tr>
<th>Feature</th>
<th>Supported by AirSPEED AP541</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web User Interface</td>
<td>yes</td>
</tr>
<tr>
<td>Telnet / CLI</td>
<td>yes</td>
</tr>
<tr>
<td>SNMP Agent</td>
<td>yes</td>
</tr>
<tr>
<td>Serial CLI</td>
<td>yes</td>
</tr>
<tr>
<td>Secure Management</td>
<td>yes</td>
</tr>
<tr>
<td>SSH</td>
<td>yes</td>
</tr>
<tr>
<td>RADIUS Based Management Access</td>
<td>yes</td>
</tr>
</tbody>
</table>
Advanced Bridging Functions

<table>
<thead>
<tr>
<th>Feature</th>
<th>Supported by AirSPEED AP541</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.1d Bridging</td>
<td>yes</td>
</tr>
<tr>
<td>WDS Relay</td>
<td>yes</td>
</tr>
<tr>
<td>Roaming</td>
<td>yes</td>
</tr>
<tr>
<td>Protocol Filtering</td>
<td>yes</td>
</tr>
<tr>
<td>Multicast/Broadcast Storm Filtering</td>
<td>yes</td>
</tr>
<tr>
<td>Proxy ARP</td>
<td>yes</td>
</tr>
<tr>
<td>TCP/UDP Port Filtering</td>
<td>yes</td>
</tr>
<tr>
<td>Blocking Intra BSS Clients</td>
<td>yes</td>
</tr>
<tr>
<td>Packet Forwarding</td>
<td>yes</td>
</tr>
</tbody>
</table>

Medium Access Control (MAC) Functions

<table>
<thead>
<tr>
<th>Feature</th>
<th>Supported by AirSPEED AP541</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Channel Selection (ACS)</td>
<td>yes</td>
</tr>
<tr>
<td>Dynamic Frequency Selection (DFS)</td>
<td>yes</td>
</tr>
<tr>
<td>Closed System Feature</td>
<td>yes</td>
</tr>
<tr>
<td>Wireless Service Shutdown</td>
<td>yes</td>
</tr>
<tr>
<td>802.11d Support</td>
<td>yes</td>
</tr>
<tr>
<td>TX Power Control</td>
<td>yes</td>
</tr>
<tr>
<td>Wireless Multimedia Enhancements/QoS (QoS)</td>
<td>yes</td>
</tr>
</tbody>
</table>

Note 1: DFS is required for 802.11a APs certified in the ETSI regulatory domain and operating in the middle frequency band. When ACS is disabled, available channels are limited to those in the lower frequency band. See Dynamic Frequency Selection (DFS) for more information.

Security Functions

<table>
<thead>
<tr>
<th>Feature</th>
<th>Supported by AirSPEED AP541</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Profiles per VLAN</td>
<td>yes</td>
</tr>
<tr>
<td>RADIUS Profiles per VLAN</td>
<td>yes</td>
</tr>
<tr>
<td>IEEE 802.11 WEP 1</td>
<td>yes</td>
</tr>
<tr>
<td>MAC Access Control</td>
<td>yes</td>
</tr>
<tr>
<td>RADIUS MAC-based Access Control</td>
<td>yes</td>
</tr>
<tr>
<td>IEEE 802.1x Authentication 2</td>
<td>yes</td>
</tr>
<tr>
<td>Multiple Authentication Server Support per VLAN 4</td>
<td>yes</td>
</tr>
<tr>
<td>Rogue Scanning to Detect Rogue Access Points and Clients</td>
<td>yes</td>
</tr>
<tr>
<td>Per User Per Session (PUPS) Encryption 3</td>
<td>yes</td>
</tr>
<tr>
<td>Wi-Fi Protected Access (WPA)</td>
<td>yes</td>
</tr>
<tr>
<td>Hardware Configuration Reset Disable</td>
<td>yes</td>
</tr>
</tbody>
</table>

Note 1: Key lengths supported by 802.11a: 64-bit, 128-bit, and 152-bit. Key lengths supported by 802.11b: 64-bit and 128-bit. Key lengths supported by 802.11b/g: 64-bit, 128-bit, and 152-bit.

Note 2: EAP-MD5, EAP-TLS, EAP-TTLS, and PEAP client supplicant supported.

Note 3: Use in conjunction with WPA or 802.1x Authentication.

Note 4: Support is provided for a primary and backup RADIUS authentication server for both MAC-based authentication and 802.1x authentication.
Network Functions

<table>
<thead>
<tr>
<th>Feature</th>
<th>Supported by AirSPEED AP541</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP Client</td>
<td>yes</td>
</tr>
<tr>
<td>DHCP Server</td>
<td>yes</td>
</tr>
<tr>
<td>DHCP Relay Agent and IP Lease Time Renewal</td>
<td>yes</td>
</tr>
<tr>
<td>Inter Access Point Protocol (IAPP)</td>
<td>yes</td>
</tr>
<tr>
<td>Link Integrity</td>
<td>yes</td>
</tr>
<tr>
<td>System Logging (Syslog)</td>
<td>yes</td>
</tr>
<tr>
<td>RADIUS Accounting Support 1</td>
<td>yes</td>
</tr>
<tr>
<td>DNS Client</td>
<td>yes</td>
</tr>
<tr>
<td>TCP/IP Protocol Support</td>
<td>yes</td>
</tr>
<tr>
<td>Virtual LAN Support</td>
<td>Each wireless interface can configure up to 16 SSIDs and VLANs, with specific security modes. For more information, refer to the Advanced Configuration chapter.</td>
</tr>
</tbody>
</table>

**Note 1:** Includes Fallback to Primary RADIUS Server, RADIUS Session Timeout, RADIUS Multiple MAC Address Formats, RADIUS DNS Host Name Support, RADIUS Start/Stop Accounting.

Hardware Specifications for the SYSTIMAX AirSPEED AP541

**Physical Specifications**
Dimensions (H x W x L) = 7.7 x 6.7 x 1.1 in (19.6 x 16.4 x 2.8 cm.)
Weight = 0.8 lb (0.36 kg)

**Electrical Specifications**
Voltage = 100 to 240 VAC (50-60 Hz)
Current = 0.2 amp
Power Consumption = <9 Watts (power supply)

**Environmental Specifications**
Operating = 0°C to 55°C (32°F to 131°F) @ 5 to 95% relative humidity, non-condensing at 5°C and 55°C
Storage = -20°C to 85°C (-4°F to 185°F) @ 5 to 95% relative humidity, non-condensing at 5°C and 85°C

**Ethernet Interface**
10/100 Base-TX, RJ45 female socket

**Serial Port Interface**
Standard RS-232C interface with DB-9, female connector

**Power over Ethernet Interface**
Use a Category 5e or better (Cat 6) UTP cable.
Standard 802.3af pin assignments

**HTTP Interface**
- Microsoft Internet Explorer 6 with Service Pack 1 or later
- Netscape 7.1 or later
Radio Specifications

- 802.11a Channel Frequencies
- 802.11b/g Channel Frequencies
- Wireless Communication Range

**NOTE**

Refer to the Regulatory Flyer included with the AP for the latest regulatory information.
### 802.11a Channel Frequencies

The available 802.11a Channels varies by regulatory domain and/or country. 802.11a radio certification is available in the following regions:
- FCC: U.S., Canada, Mexico, Argentina, Australia
- ETSI: European Union (with the exception of Hungary and the Czech Republic), Brazil, Iceland, Norway, Saudi Arabia, Switzerland
- TELEC: Japan
- SG: Singapore
- ASIA: China, Hong Kong, South Korea
- TW: Taiwan

There are five sets of frequency bands that determine the available channels depending on the regulatory domain. Some countries restrict 802.11a operation to specific frequency bands. The Web interface and CLI display the available channels for a radio's particular regulatory domain. In the CLI, any channels that are not available are labeled "Not Supported".

<table>
<thead>
<tr>
<th>Frequency Band</th>
<th>Channel ID</th>
<th>FCC (GHz)</th>
<th>ETSI (GHz)</th>
<th>TELEC (GHz)</th>
<th>SG (GHz)</th>
<th>ASIA (GHz)</th>
<th>TW (GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Band</td>
<td>34</td>
<td>—</td>
<td>—</td>
<td>5.170</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(36 = default)</td>
<td>36</td>
<td>5.180</td>
<td>5.180</td>
<td>—</td>
<td>5.180</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>—</td>
<td>5.190</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>5.200</td>
<td>5.200</td>
<td>—</td>
<td>5.200</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>—</td>
<td>5.210</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>5.220</td>
<td>5.220</td>
<td>—</td>
<td>5.220</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>—</td>
<td>5.230</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>5.240</td>
<td>5.240</td>
<td>—</td>
<td>5.240</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Middle Band</td>
<td>52</td>
<td>5.260</td>
<td>5.260</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5.260</td>
</tr>
<tr>
<td>(52 = default)</td>
<td>56</td>
<td>5.280</td>
<td>5.280</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5.280</td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>5.300</td>
<td>5.300</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5.300</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>5.320</td>
<td>5.320</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5.320</td>
</tr>
<tr>
<td>H Band</td>
<td>100</td>
<td>—</td>
<td>5.500</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>104</td>
<td>—</td>
<td>5.520</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>108</td>
<td>—</td>
<td>5.540</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>112</td>
<td>—</td>
<td>5.560</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>116</td>
<td>—</td>
<td>5.580</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>—</td>
<td>5.600</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>124</td>
<td>—</td>
<td>5.620</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>—</td>
<td>5.640</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>132</td>
<td>—</td>
<td>5.660</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>136</td>
<td>—</td>
<td>5.680</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>—</td>
<td>5.700</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Upper Band</td>
<td>149</td>
<td>5.745</td>
<td>—</td>
<td>5.745</td>
<td>5.745</td>
<td>5.745</td>
<td>5.745</td>
</tr>
<tr>
<td>(149 = default)</td>
<td>153</td>
<td>5.675</td>
<td>—</td>
<td>5.675</td>
<td>5.675</td>
<td>5.675</td>
<td>5.675</td>
</tr>
<tr>
<td></td>
<td>157</td>
<td>5.785</td>
<td>—</td>
<td>5.785</td>
<td>5.785</td>
<td>5.785</td>
<td>5.785</td>
</tr>
<tr>
<td></td>
<td>161</td>
<td>5.805</td>
<td>—</td>
<td>5.805</td>
<td>5.805</td>
<td>5.805</td>
<td>5.805</td>
</tr>
<tr>
<td>ISM Band</td>
<td>165</td>
<td>5.825</td>
<td>—</td>
<td>5.825</td>
<td>—</td>
<td>—</td>
<td>5.825</td>
</tr>
</tbody>
</table>

**Note 1**: Channel 34 is the default channel for Japan.
802.11b/g Channel Frequencies

The available 802.11b/g channels vary by regulatory domain and/or country. 802.11b/g radio certification is available in the following regions:

- FCC: U.S., Canada, Mexico, Argentina, Australia
- ETSI: European Union (with the exception of Hungary and the Czech Republic), Brazil, China, Iceland, India, Hong Kong, Norway, Saudi Arabia, Singapore, South Korea, Switzerland, Taiwan, United Arab Emirates
- TELEC: Japan

Some countries restrict 802.11b/g operation to specific frequency bands. The web interface will always display the available channels depending on the embedded radio’s domain. In the CLI, any channels that are not available are labeled "Not Supported".

<table>
<thead>
<tr>
<th>Channel ID</th>
<th>FCC (GHz)</th>
<th>ETSI (GHz)</th>
<th>TELEC (GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.412</td>
<td>2.412</td>
<td>2.412</td>
</tr>
<tr>
<td>2</td>
<td>2.417</td>
<td>2.417</td>
<td>2.417</td>
</tr>
<tr>
<td>3</td>
<td>2.422</td>
<td>2.422</td>
<td>2.422</td>
</tr>
<tr>
<td>4</td>
<td>2.427</td>
<td>2.427</td>
<td>2.427</td>
</tr>
<tr>
<td>5</td>
<td>2.432</td>
<td>2.432</td>
<td>2.432</td>
</tr>
<tr>
<td>6</td>
<td>2.437</td>
<td>2.437</td>
<td>2.437</td>
</tr>
<tr>
<td>7</td>
<td>2.442</td>
<td>2.442</td>
<td>2.442</td>
</tr>
<tr>
<td>8</td>
<td>2.447</td>
<td>2.447</td>
<td>2.447</td>
</tr>
<tr>
<td>9</td>
<td>2.452</td>
<td>2.452</td>
<td>2.452</td>
</tr>
<tr>
<td>10</td>
<td>2.457</td>
<td>2.457¹</td>
<td>2.457</td>
</tr>
<tr>
<td>11</td>
<td>2.462</td>
<td>2.462¹</td>
<td>2.462</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>2.467¹</td>
<td>2.467</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>2.472¹</td>
<td>2.472</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>-</td>
<td>2.484²</td>
</tr>
</tbody>
</table>

**Note 1:** France is restricted to these channels.

**Note 2:** Channel 14 is only available when using **802.11b only** mode.

Wireless Communication Range

The range of the wireless signal is related to the composition of objects in the radio wave path and the transmit rate of the wireless communication. Communications at a lower transmit range may travel longer distances. The range values listed in the Communications Range Chart are typical distances as calculated by the SYSTIMAX development team for FCC-certified products. These values provide a rule of thumb and may vary according to the actual radio conditions at the location where the product is used.

The range of your wireless devices can be affected when the antennas are placed near metal surfaces and solid high-density materials. Range is also impacted due to “obstacles” in the signal path of the radio that may either absorb or reflect the radio signal.

In Open Office environments, antennas can “see” each other (no physical obstructions between them). In Semi-open Office environments, workspace is divided by shoulder-height, hollow wall elements; antennas are at desktop level. In a Closed Office environment, solid walls and other obstructions may affect signal strength.

The following tables show typical range values for various environments for FCC-certified products (range may differ for products certified in other regulatory domains).
### Table C-1 802.11b Wireless Communication Ranges

<table>
<thead>
<tr>
<th>Range</th>
<th>11 Mbits/s</th>
<th>5.5 Mbits/s</th>
<th>2 Mbits/s</th>
<th>1 Mbits/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Office</td>
<td>142 m (466 ft.)</td>
<td>177 m (558 ft.)</td>
<td>219 m (718 ft.)</td>
<td>272 m (892 ft.)</td>
</tr>
<tr>
<td>Semi-Open Office</td>
<td>98 m (322 ft.)</td>
<td>122 m (400 ft.)</td>
<td>151 m (495 ft.)</td>
<td>187 m (614 ft.)</td>
</tr>
<tr>
<td>Closed Office</td>
<td>67 m (220 ft.)</td>
<td>84 m (276 ft.)</td>
<td>104 m (341 ft.)</td>
<td>129 m (423 ft.)</td>
</tr>
</tbody>
</table>

**Tx Power (dBm)**: 20 20 20 20

**Receiver Sensitivity (dBm)**: -82 -85 -88 -91

**Antenna Gain**: 1 dBi (integrated diversity antenna module; 2.4-2.5 GHz)

### Table C-2 802.11a Wireless Communication Ranges

<table>
<thead>
<tr>
<th>Range</th>
<th>54 Mbits/s</th>
<th>48 Mbits/s</th>
<th>36 Mbits/s</th>
<th>24 Mbits/s</th>
<th>18 Mbits/s</th>
<th>12 Mbits/s</th>
<th>9 Mbits/s</th>
<th>6 Mbits/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Office</td>
<td>46 m (151 ft.)</td>
<td>62 m (203 ft.)</td>
<td>62 m (209 ft.)</td>
<td>110 m (361 ft.)</td>
<td>136 m (446 ft.)</td>
<td>169 m (554 ft.)</td>
<td>181 m (594 ft.)</td>
<td>195 m (640 ft.)</td>
</tr>
<tr>
<td>Semi-Open Office</td>
<td>32 m (105 ft.)</td>
<td>42 m (138 ft.)</td>
<td>57 m (187 ft.)</td>
<td>75 m (246 ft.)</td>
<td>94 m (308 ft.)</td>
<td>116 m (381 ft.)</td>
<td>125 m (410 ft.)</td>
<td>134 m (446 ft.)</td>
</tr>
<tr>
<td>Closed Office</td>
<td>22 m (72 ft.)</td>
<td>29 m (95 ft.)</td>
<td>39 m (128 ft.)</td>
<td>52 m (171 ft.)</td>
<td>64 m (210 ft.)</td>
<td>80 m (262 ft.)</td>
<td>86 m (282 ft.)</td>
<td>92 m (302 ft.)</td>
</tr>
</tbody>
</table>

**Tx Power (dBm)**: 16 16 16 16 16 16 16 16 20 20 20 20

**Receiver Sensitivity (dBm)**: -69 -73 -77 -81 -84 -87 -88 -89

**Antenna Gain**: 0 dBi (integrated diversity antennas; 5.15-5.85 GHz)

### Table C-3 802.11g Wireless Communication Ranges

<table>
<thead>
<tr>
<th>Range</th>
<th>54 Mbits/s</th>
<th>48 Mbits/s</th>
<th>36 Mbits/s</th>
<th>24 Mbits/s</th>
<th>18 Mbits/s</th>
<th>12 Mbits/s</th>
<th>9 Mbits/s</th>
<th>6 Mbits/s</th>
<th>5.5 Mbits/s</th>
<th>2 Mbits/s</th>
<th>1 Mbits/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Office</td>
<td>56 m (184 ft.)</td>
<td>69 m (226 ft.)</td>
<td>107 m (351 ft.)</td>
<td>164 m (538 ft.)</td>
<td>219 m (716 ft.)</td>
<td>272 m (892 ft.)</td>
<td>292 m (958 ft.)</td>
<td>314 m (1030 ft.)</td>
<td>314 m (1030 ft.)</td>
<td>204 m (669 ft.)</td>
<td>236 m (774 ft.)</td>
</tr>
<tr>
<td>Semi-Open Office</td>
<td>38 m (125 ft.)</td>
<td>48 m (157 ft.)</td>
<td>73 m (239 ft.)</td>
<td>113 m (371 ft.)</td>
<td>151 m (495 ft.)</td>
<td>187 m (614 ft.)</td>
<td>201 m (659 ft.)</td>
<td>216 m (709 ft.)</td>
<td>216 m (709 ft.)</td>
<td>140 m (459 ft.)</td>
<td>162 m (531 ft.)</td>
</tr>
<tr>
<td>Closed Office</td>
<td>26 m (85 ft.)</td>
<td>33 m (108 ft.)</td>
<td>51 m (167 ft.)</td>
<td>78 m (256 ft.)</td>
<td>104 m (341 ft.)</td>
<td>129 m (423 ft.)</td>
<td>138 m (453 ft.)</td>
<td>149 m (489 ft.)</td>
<td>149 m (489 ft.)</td>
<td>97 m (318 ft.)</td>
<td>111 m (364 ft.)</td>
</tr>
</tbody>
</table>

**Tx Power (dBm)**: 17 17 17 17 17 17 17 17 17 17 17 17 17 17

**Receiver Sensitivity (dBm)**: -68 -70 -75 -80 -84 -87 -88 -89 -88 -83 -85 -86 -86 -90

**Antenna Gain**: 1 dBi (integrated diversity antenna module; 2.4-2.5 GHz)